References
-
Baldwin, A. S., Jr. (1996) The NF-
${\kappa}B$ and$I{\kappa}B$ proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649 - Basu, A., Lazovic, J., Krady, J. K., Mauger, D. T., Rothstein, R. P., Smith, M. B. and Levison, S. W. (2005) Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J. Cereb. Blood Flow Metab. 25, 17-29. https://doi.org/10.1038/sj.jcbfm.9600002
- Berti, R., Williams, A. J., Moffett, J. R., Hale, S. L., Velarde, L. C., Elliott, P. J., Yao, C., Dave, J. R. and Tortella, F. C. (2002) Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J. Cereb. Blood Flow Metab. 22, 1068-1079. https://doi.org/10.1097/00004647-200209000-00004
-
Boersma, M. C. and Meffert, M. K. (2008) Novel roles for the NF-
${\kappa}B$ signaling pathway in regulating neuronal function. Sci. Signal. 1, pe7 - Borlongan, C. V., Hida, H. and Nishino, H. (1998) Early assessment of motor dysfunctions aids in successful occlusion of the middle cerebral artery. Neuroreport. 9, 3615-3621. https://doi.org/10.1097/00001756-199811160-00012
- Culmsee, C. and Krieqlstein, J. (2007) Ischaemic brain damage after stroke: new insights into efficient therapeutic strategies. International Symposium on Neurodegeneration and Neuroprotection. EMBO Rep. 8, 129-133. https://doi.org/10.1038/sj.embor.7400892
-
Cui, D. R., Wang, L., Jiang, W., Qi, A. H., Zhou, Q. H. and Zhang, X. L. (2013) Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-
${\kappa}B$ /p53 signaling pathway. Neuroscience 246, 117-132. https://doi.org/10.1016/j.neuroscience.2013.04.054 - Derugin, N., Wendland, M., Muramatsu, K., Roberts, T. P., Gregory, G., Ferriero, D. M. and Vexler, Z. S. (2000) Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 31, 1752-1761. https://doi.org/10.1161/01.STR.31.7.1752
- Dimagl, U., ladecola, C. and Moskowitz, M. A. (1999) Pathobiology of ischaemic stroke : an integrated view. Trends Neurosci. 22, 391-397. https://doi.org/10.1016/S0166-2236(99)01401-0
- Ferriero, D. M., Holtzman, D. M., Black, S. M. and Sheldon, R. A. (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol. Dis. 3, 64-71. https://doi.org/10.1006/nbdi.1996.0006
- Fujita, M., Tsuruta, R., Kaneko, T., Otsuka, Y., Kutsuna, S., Izumi, T., Aoki, T., Shitara, M., Kasaoka, S., Maruyama, I., Yuasa, M. and Maekawa, T. (2010) Hyperoxia suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats: laboratory study. Shock 34, 299-305. https://doi.org/10.1097/SHK.0b013e3181ceeeec
- Guo, Y., Xu, X., Li, Q., Li, Z. and Du, F. (2010) Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav. Brain Funct. 6, 43. https://doi.org/10.1186/1744-9081-6-43
-
Hoffman, W. E., Kochs, E., Werner, C., Thomas, C. and Albrecht, R. F. (1991) Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat: Reversal by the
${\alpha}2$ -adrenergic antagonist atipamezole. Anesthesiology 75, 328-332. https://doi.org/10.1097/00000542-199108000-00022 -
Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai, Y. C. and Yang, H. L. (2005) Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-
${\kappa}B$ pathway. Int. Immunopharmacol. 5, 1914-1925. https://doi.org/10.1016/j.intimp.2005.06.013 - Iadecola, C., Zhang, F., Casey, R., Nagayama, M. and Ross, M. E. (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157-9164. https://doi.org/10.1523/JNEUROSCI.17-23-09157.1997
-
Jiang, Q., Xia, Y. Y., He, J. M., Guo, M. L. and Li, R. P. (2014) Total bakkenolides protects neurons against cerebral ischemic injury through inhibition of nuclear factor-
${\kappa}B$ activation. CNS Neurol. Disord. Drug Targets 13, 874-884. https://doi.org/10.2174/18715273113129990104 -
Kamibayashi, T. and Maze, M. (2000) Clinical uses of
${\alpha}2$ -adrenergic agonists. Anesthesiology 93, 1345-1349. https://doi.org/10.1097/00000542-200011000-00030 - Kim, D. H., Kim, S., Jung, W. Y., Park, S. J., Park, D. H., Kim, J. M., Cheong, J. H. and Ryu, J. H. (2009) The neuroprotective effects of the seeds of Cassia obtusifolia on transient cerebral global ischemia in mice. Food Chem. Toxicol. 47, 1473-1479. https://doi.org/10.1016/j.fct.2009.03.028
- Kocoglu, H., Ozturk, H., Ozturk, H., Yilmaz, F. and Gulcu, N. (2009) Effect of dexmedetomidine on ischemia-reperfusion injury in rat kidney: A histopathologic study. Ren. Fail. 31, 70-74. https://doi.org/10.1080/08860220802546487
- Koistinaho, J., Koponen, S. and Chan, P. H. (1999) Expression of cyclooxygenase-2 mRNA after global ischemia is regulated by AMPA receptors and glucocorticoids. Stroke 30, 1900-1905; discussion 1905-1906. https://doi.org/10.1161/01.STR.30.9.1900
- Kuhmonen, J., Haapalinna, A. and Sivenius, J. (2001) Effects of dexmedetomidine after transient and permanent occlusion of the middle cerebral artery in the rat. J. Neural Transm. (Vienna) 108, 261-271. https://doi.org/10.1007/s007020170071
-
Laudenbach, V., Mantz, J., Lagercrantz, H., Desmonts, J. M., Evrard, P. and Gressens, P. (2002) Effects of
${\alpha}2$ -adrenoceptor agonists on perinatal excitotoxic brain injury: comparison of clonidine and dexmedetomidine. Anesthesiology 96, 134-141. https://doi.org/10.1097/00000542-200201000-00026 - Lee, J. M., Grabb, M. C., Zipfel, G. J. and Choi, D. W. (2000) Brain tissue responses to ischemia. J. Clin. Invest. 106, 723-731. https://doi.org/10.1172/JCI11003
- Longa, E. Z., Weinstein, P. R., Carlson, S. and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. https://doi.org/10.1161/01.STR.20.1.84
-
Lou, H. Y., Wei, X. B., Zhang, B., Sun, X. and Zhang, X. M. (2007) Hydroxyethylpuerarin attenuates focal cerebral ischemia-reperfusion injury in rats by decreasing TNF-
${\alpha}$ expression and NF${\kappa}B$ activity. Yao Xue Xue Bao 42, 710-715. - Min, K. J., Cho, K. H. and Kwon, T. K. (2012) The effect of oxidized low density lipoprotein (oxLDL)-induced heme oxygenase-1 on LPS-induced inflammation in RAW 264.7 macrophage cells. Cell. Signal. 24, 1215-1221. https://doi.org/10.1016/j.cellsig.2012.02.001
- Okada, H., Kurita, T., Mochizuki, T., Morita, K. and Sato, S. (2007) The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation 74, 538-545. https://doi.org/10.1016/j.resuscitation.2007.01.032
-
Qiao, H., Zhang, X., Zhu, C., Dong, L., Wang, L., Zhang, X., Xing, Y., Wang, C., Ji, Y. and Cao, X. (2012) Luteolin downregulates TLR4, TLR5, NF-
${\kappa}B$ and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia. Brain Res. 1448, 71-81. https://doi.org/10.1016/j.brainres.2012.02.003 - Ritter, L. S., Orozco, J. A., Coull, B. M., McDonagh, P. F. and Rosenblum, W. I. (2000) Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 31, 1153-1161. https://doi.org/10.1161/01.STR.31.5.1153
- Wang, C., Liu, J. L., Sang, H. F., Lu, Y., Dong, H. L. and Xiong, L. Z. (2008) Therapeutic time window of flurbiprofen axetil's neuroprotective effect in a rat model of transient focal cerebral ischemia. Chin. Med. J. 121, 2572-2577.
-
Xie, C., Kang, J., Ferguson, M. E., Nagarajan, S., Badger, T. M. and Wu, X. (2011) Blueberries reduce pro-inflammatory cytokine TNF-
${\alpha}$ and IL-6 production in mouse macrophages by inhibiting NF-${\kappa}B$ activation and the MAPK pathway. Mol Nutr. Food Res. 55, 1587-1591. https://doi.org/10.1002/mnfr.201100344 - Yasuda, Y., Shimoda, T., Uno, K., Tateishi, N., Furuya, S., Tsuchihashi, Y. Kawai, Y., Naruse, S. and Fujita, S. (2011) Temporal and sequential changes of glial cells and cytokine expression during neuronal degeneration after transient global ischemia in rats. J. Neuroinflammation. 8, 70. https://doi.org/10.1186/1742-2094-8-70
- Zhang, J., Zhen, Y. F., Pu-Bu-Ci-Ren, Song, L. G., Kong, W. N., Shao, T. M., Li, X. And Chai, X. Q. (2013) Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav. Brain Res. 244, 70-81. https://doi.org/10.1016/j.bbr.2013.01.037
- Zhang, X. Y., Liu, Z. M., Wen, S. H., Li, Y. S., Li, Y., Yao, X., Huang, W. Q. and Liu, K. X. (2012) Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology 116, 1035-1046. https://doi.org/10.1097/ALN.0b013e3182503964
- Zhao, P., Ji, G., Xue, H., Yu, W., Zhao, X., Ding, M., Yang, Y. and Zuo, Z. (2014) Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience 280, 193-203. https://doi.org/10.1016/j.neuroscience.2014.09.006
Cited by
- Participation of NO-synthase in Control of Nitric Oxide Level in Rat Hippocampus after Modelling of Ischaemic and Haemorrhagic Insult vol.20, pp.2050-2966, 2017, https://doi.org/10.3897/biodiscovery.20.e14810
- Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway vol.44, pp.9, 2017, https://doi.org/10.1111/1440-1681.12791
- Does Dexmedetomidine Ameliorate Postoperative Cognitive Dysfunction? A Brief Review of the Recent Literature vol.18, pp.10, 2018, https://doi.org/10.1007/s11910-018-0873-z
- Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-5039-5
- Dexmedetomidine inhibits inflammatory reaction in the hippocampus of septic rats by suppressing NF-κB pathway vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0196897
- Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms vol.13, pp.5, 2018, https://doi.org/10.4103/1673-5374.232529
- Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats vol.33, pp.1, 2017, https://doi.org/10.1080/13102818.2019.1620633
- miR-223-3p/TIAL1 interaction is involved in the mechanisms associated with the neuroprotective effects of dexmedetomidine on hippocampal neuronal cells in vitro vol.19, pp.2, 2017, https://doi.org/10.3892/mmr.2018.9742
- Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model vol.392, pp.10, 2017, https://doi.org/10.1007/s00210-019-01670-x
- Dexmedetomidine inhibits neuronal apoptosis by inducing Sigma-1 receptor signaling in cerebral ischemia-reperfusion injury vol.11, pp.21, 2017, https://doi.org/10.18632/aging.102404
- Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway vol.19, pp.1, 2017, https://doi.org/10.1186/s12871-019-0808-5
- Mechanisms of Dexmedetomidine in Neuropathic Pain vol.14, pp.None, 2017, https://doi.org/10.3389/fnins.2020.00330
- Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury vol.12, pp.21, 2020, https://doi.org/10.18632/aging.103975
- Postoperative delirium after long-term general anesthesia in elderly patients, how to reduce it? : Protocol of a double-blinded, randomized, placebo-controlled trial vol.100, pp.22, 2017, https://doi.org/10.1097/md.0000000000025885
- Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils vol.264, pp.None, 2017, https://doi.org/10.1016/j.lfs.2020.118660
- DL0410 Alleviates Memory Impairment in D-Galactose-Induced Aging Rats by Suppressing Neuroinflammation via the TLR4/MyD88/NF-κB Pathway vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6521146
- Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.703084
- Dexmedetomidine‐up‐regulated microRNA‐381 exerts anti‐inflammatory effects in rats with cerebral ischaemic injury via the transcriptional factor IRF4 vol.25, pp.4, 2021, https://doi.org/10.1111/jcmm.16153
- Dexmedetomidine Resists Intestinal Ischemia-Reperfusion Injury by Inhibiting TLR4/MyD88/NF-κB Signaling vol.260, pp.None, 2017, https://doi.org/10.1016/j.jss.2020.11.041
- Why do We Use the Concepts of Adult Anesthesia Pharmacology in Developing Brains? Will It Have an Impact on Outcomes? Challenges in Neuromonitoring and Pharmacology in Pediatric Anesthesia vol.10, pp.10, 2017, https://doi.org/10.3390/jcm10102175
- The Current Role of Dexmedetomidine as Neuroprotective Agent: An Updated Review vol.11, pp.7, 2021, https://doi.org/10.3390/brainsci11070846
- Novel Stachydrine-Leonurine Conjugate SL06 as a Potent Neuroprotective Agent for Cerebral Ischemic Stroke vol.12, pp.13, 2021, https://doi.org/10.1021/acschemneuro.1c00200
- Protective effects of dexmedetomidine on cerebral ischemia/reperfusion injury via the microRNA-214/ROCK1/NF-κB axis vol.21, pp.1, 2021, https://doi.org/10.1186/s12871-021-01423-5