• Title/Summary/Keyword: NDT for concrete

Search Result 74, Processing Time 0.022 seconds

Damage Evaluation on the Concrete Using Acoustic Emission (음향방출(AE)을 이용한 콘크리트의 손상도 평가)

  • 이웅종;조홍동;이종열;한상훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.750-758
    • /
    • 2002
  • Concrete is deformed by load and subjected to micro damage under allowable deformation because of non-homogeneous property. When micro damage is accumulated, it is cracked and finally fractured. Characterization of AE can be demonstrated the micro damage which it is not discovered from visual observation, and it become known to an advantage that was clearly discriminated from the existing NDT method. This study was carried out the analysis and evaluation of concrete damage by acoustic emission technique. As a results of damage analysis, it was found out that the more concrete strength has increased, the more concrete has subjected to micro damage at lower stress ratio for chylinder specimen, and this is possible only AE method which could be described the brittle properties. Also it was revealed that the kaiser effect and felicity effect were existed in reinforced concrete bending specimens and it is found out that the onset of interface debonding between concrete and steel could be conformed in comparison with felicity ratio, AE activity and load history. From the results of this study, it was conformed that the deteriorative degree of reinforced concrete structure should be evaluated using felicity ratios.

Estimating Concrete Compressive Strength Using Wave Propagation Method (Wave Propagation 기법을 이용한 콘크리트의 압축강도 추정)

  • Kwon, Soo-Ahn;An, Ji-Hwan;Suh, Young-Chan;Cho, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.63-69
    • /
    • 2005
  • For many years, the compressive strength of concrete has been regarded as an important index in determining concrete pavement quality. The compressive strength of the sample cores from the field has been used as quality index of concrete pavement. However, this process is time consuming and requires a lot of labor. Recently, the M-E Design Methodology in the pavement design based on the elastic modulus has been adopted. Therefore, several NDT methodologies have been adopted for QA/QC in the field and for the pavement design. Among various NDT methods, the wave propagation method can be used to measure the elastic modulus of concrete because the wave velocity is directly related to the elastic modulus. Therefore, in this study the wave propagation method was used for estimating the concrete modulus. The relationship between the compressive strength measured in he laboratory and the elastic modulus measured by the wave propagation method was analyzed, and the compressive strength was estimated from the elastic modulus for various mix types. The results showed that the relationship between the elastic modulus and the compressive strength was observed and the relationship varied depending on the aggregate types.

  • PDF

Evaluation on Structural Stiffness and Grouting Efficiency of Concrete Track using Elastic Wave Tests (탄성파 기법을 이용한 콘크리트궤도의 구조강성 및 충전상태 평가에 관한 연구)

  • Lee, Il-Wha;Joh, Sung-Ho;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • Recently, concrete track is replacing ballast track for efficient and economic maintenance of track. It considerably offer less maintenance, a longer service life and reduced life-cycle costs. With the aim of achieving high-quality track construction work, of developing tools for quality assurance in new construction and for later technical inspection of material condition, a quality strategy has to be developed. For these purpose, NDT which is using the seismic wave has carried out in situ studies in the test construction section. The used NDT are SASW test, impact echo test and continuous impact echo test. The test is performed 5,353 times on 49 pre-cast concrete track panels to verify the stiffness structure and grouting efficiency of the track structure. To conclude, because of the non-homogeneous characteristic of concrete material. it is restricted to apply the elastic wave test at some aspect. However it is possible to acquisite a sufficient reliability about structural stiffness and grouting efficiency of concrete track.

The Development of Compressive Strength Estimation Equation for LNG Storage Tank using Rebound Hardness Method (반발경도법을 이용한 LNG 저장탱크 콘크리트의 압축강도 추정식 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.26-32
    • /
    • 2017
  • Outer tank concretes of LNG storage tank are composed of prestressed concrete structures that act as a protective wall. The danger such as the collapse of structures will exist if concrete structures is not secured due to the deterioration. Concrete compressive strength directly related to the safety of structures can be predicted by using estimation equation of compressive strength through rebound hardness test and ultrasonic wave velocity method. But, there is no the estimation equation of LNG storage tank for a relation between NDT data and real strength. In this study, to obtain more accurate real strengths for LNG storage tank, core specimens were sampled from walls of pilot LNG storage tank. The rebound hardness test of general NDT for concrete structures was carried out at each 3 positions for the four areas. The compressive strength estimation equation of LNG storage tank was developed by using the data for rebound hardness test of pilot LNG storage tank and compressive strength test of sampled concrete cores.

Concrete compressive strength prediction using the imperialist competitive algorithm

  • Sadowski, Lukasz;Nikoo, Mehdi;Nikoo, Mohammad
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.355-363
    • /
    • 2018
  • In the following paper, a socio-political heuristic search approach, named the imperialist competitive algorithm (ICA) has been used to improve the efficiency of the multi-layer perceptron artificial neural network (ANN) for predicting the compressive strength of concrete. 173 concrete samples have been investigated. For this purpose the values of slump flow, the weight of aggregate and cement, the maximum size of aggregate and the water-cement ratio have been used as the inputs. The compressive strength of concrete has been used as the output in the hybrid ICA-ANN model. Results have been compared with the multiple-linear regression model (MLR), the genetic algorithm (GA) and particle swarm optimization (PSO). The results indicate the superiority and high accuracy of the hybrid ICA-ANN model in predicting the compressive strength of concrete when compared to the other methods.

Measurement of Electromagnetic Properties of Concrete for Nondestructive Testing (비파괴 시험을 위한 콘크리트의 전자기적 특성의 측정)

  • 임홍철;정성훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Characterizing the electromagnetic properties of concrete is essential to the enhancement of accuracy and reliability in nondestructive testing of concrete structures using electromagnetic techniques. To establish a data base for the properties of concrete, a measurement technique has been developed and a set of data has been obtained for the frequency range of 1~6 GHz. As moisture content is one of major contributing factors to determine permittivity of dielectric material, moisture content is varied during the measurement. An application of a measurement system which consists of open-ended coaxial probe and automatic network analyzer to concrete and mortar specimens is studied. For this, calibration techniques, size of specimens, and number of measurements necessary to obtain reliable data are investigated. From the measured data, it is shown that moisture content plays an important role to determine the permittivity of specimens. As the moisture content increases. The permittivity of specimens show tendency to approach the permittivity of water.

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

Study on Evaluation of High Temperature Degradation of Concrete using Ultrasonic Velocity Method (초음파 속도법을 이용한 콘크리트의 고온열화 평가에 대한 연구)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.146-147
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity.

  • PDF

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S.;Leman, Z.;Baharudin, B.T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1075-1095
    • /
    • 2015
  • The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.