• Title/Summary/Keyword: NDE Methods

Search Result 65, Processing Time 0.024 seconds

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

Detection of Inclusions in Concrete Slab by Impact-Resonance Method (충격공진법을 이용한 콘크리트 슬래브 내의 개재물 검출)

  • Kim, Hak-Hyun;Yim, Hyun-June;Lee, Kwang-Myong;Cho, Nam-Jun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.221-230
    • /
    • 2000
  • The usefulness and limitations of the impact-resonance method, which is a nondestructive evaluation (NDE) method for concrete, are studied by both experimental and theoretical methods. For the experimental study, several concrete slab specimens with various inclusions embedded were fabricated, and tested by the impact-resonance method. Some of the inclusions have been detected and accurately located, but some have not. The reasons for the failure in the latter cases have been investigated theoretically by using finite element analyses, from which the primary factors determining the success of the method have also been identified. This study will serve to enhance the understanding of the underlying physics and to improve the usefulness of the impact-resonance method as applied to concrete NDE.

  • PDF

A Study on Damage Detection of Production Riser (생산 라이저의 손상 탐지에 대한 연구)

  • Je, Hyun-Min;Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • The purpose of this study is to provide appropriate methodology to ensure the safety and integrity of the production riser in offshore structure. In order to select integrity estimation methodology for production riser, level I and II Non-destructive Damage Evaluation (NDE) methods that were applied to existing structures are classified and reviewed. Numerical analysis is performed to verify the applicability and capability on damage detection of reviewed methods. As a result, the damage detection methodology using modal strain energy is more sensitive in detection of the damage than other methods. In practice, the number of sensors is limited due to the environmental and financial conditions. The impact on damage detection performance by reducing the number of sensors is systematically investigated through a series of numerical analyses and the results are discussed. The optimal number of sensor for the integrity estimation of production riser is recommended.

Use of Nondestructive Evaluation Methods in Bridge Management Systems (교량유지관리시스템에 있어서 비파괴 시험의 효율적 활용 방안)

  • 심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1291-1296
    • /
    • 2000
  • A basis for the direct use of data from nondestructive evaluation methods in bridge management systems is presented. Bridge management systems use integer-valued condition ratings to recognize conditions of bridge elements, to model progression of deterioration, and to determine repair needs. Data from nondestructive evaluation methods can inform management systems on the extent of damage, on the initiation of deterioration processes, and on the exposure of bridge elements to aggressive agents. In addition, data obtained through nondestructive evaluation methods allow the formation of models of specific deterioration process. The use of these data in bridge management systems requires redefinition of condition ratings together with the creation of procedures for automated interpretation of data. By these action, nondestructive evaluation methods are directly used to assign condition ratings, and condition ratings are made into terse form of NDE data that are compatible with present day bridge management systems. This paper reports work in progress to strategic use of nondestructive evaluation methods in bridge management system.

Review of Rail Inspection Technology (철도 레일 결함 탐상기술 현황)

  • Han, Soon-Woo;Cho, Seung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.154-161
    • /
    • 2011
  • Rail inspection is very important as damages in rail can bring about a serious railway accident. In this paper, several real-time non-destructive technologies applied or considered to be applied to damage detection of rails are described. Some limits of existing ultrasonic testing method which has been widely used for rail inspection are discussed. Non-contact type NDE methods for rail inspection and their technical problems are also described.

  • PDF

A Study on Corrosion Measurement Techniques and Evaluation for Structure of EMU (도시철도차량 구조물에 대한 부식측정기법 적용 및 평가방안 연구)

  • Chung, Jong-Duk;Pyun, Jang-Sik;Hong, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.931-938
    • /
    • 2011
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. Under frame side sill in rolling stocks is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications and evaluation of NDI technology in EMU.

  • PDF

Evaluation Technology for the Flaw Sizing of Generator Rotor by Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 발전기 로터 결점크기 평가)

  • Kim, Jin-Hoi;Park, Cher-Young;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the examination shall be evaluated for the decision basis of the integrity. The internal flaws of forging products can be detected by UT. However, UT has detection limits because of its reflected signal weakness. Normally, a 1mm or less flaw is known as the limit. If a flaw was detected, the size of flaw would be evaluated by AVG(or DGS) technique. To verify the evaluation data, alternative examination methods are needed. But there is no alternative examination methods until now. In this study, Phased array ultrasonic technique can be used to size the flaws in the generator rotor with focused beam of ultrasonic wave as a supplement method of AVG. Also, the phased array ultrasonic technique described enables the shape of flaw to be depicted exactly.

  • PDF

Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method (초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

A Study on Utilization of Nondestructive Inspection Method for Defects Evaluation in Electric Multiple Units (도시철도차량 결함평가를 위한 비파괴검사 기법의 적용방안)

  • Pyun, Jang-Sik;Chung, Jong-Duk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.673-679
    • /
    • 2009
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications of NDI technology in EMU.

  • PDF

Current Status and Investigation of International Co-operative Research Program-PINC(Program for the Inspection of Nickel Alloy Components) (국제공동연구 PINC(Program for the Inspection of Nickel Alloy Components) 현황 및 고찰)

  • Kim, Kyung-Cho;Kang, Sung-Sik;Song, Kyung-Ho;Chung, Koo-Kap;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, PINC project. The aim of this project is to fabricate and obtain representative NDE mock-ups with flaws to simulate tight PWSCC cracks, to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing tight cracks such as PWSCC, to document the range of locations and crack morphologies associated with PWSCC and observed responses and to incorporate findings from other ongoing PWSCC research programs, as appropriate. By participating in PINC project, Korean morphology technique about PWSCC and NDE technique have improved and become similar lever with other advanced country. Therefore, the evaluation technique of integrity for nickel alloy component has been improved by cooperation with university, research institute and industries.