• Title/Summary/Keyword: NDE(Non-Destructive Evaluation)

Search Result 48, Processing Time 0.027 seconds

Nondestructive Strength Evaluation of Adhesive-Bonded Single-Lap Joints by Signal Processing Method (신호처리기법을 이용한 단순겹치기 접착이음의 비파괴적 강도평가)

  • Jeong, Il-Hwa;O, Seung-Kyu;Hwang, Yeong-Taik;Jang, Chul-Seob;Jeong, Eui-Seob;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.541-546
    • /
    • 2001
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as the aeronautical and space industries, automobile manufacture, and electronics. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This study used adhesive-bonded single-lap joints specimen to evaluate such possibility by ultrasonic signal processing method.

  • PDF

NDE for Realising Better Quality of Life in the Context of INDIA - An Emerging Economy

  • Raj, Baldev
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.497-519
    • /
    • 2003
  • Science and technology is an essential ingredient of the progress in modern society. Measurements enable action and actions enable results. Non-Destructive Evaluation (NDE) - the science and technology of measurements without affecting the Properties and performance of the test object is an interdisciplinary domain area of high significance far ensuring quality, productivity and safety thus enabling better qualify of lift to the inhabitants on this planet. The test object can be material, component, plant, earth, environment etc. Total qualify management, total productivity management, concurrent engineering and many other essential ingredients of success in plant engineering and manufacturing industry are dependent on NDE far success and good returns on investments.

Non-Destructive Evaluation for Material of Thermal Barrier Coatings (단열 코팅재료의 비파괴 평가기법)

  • Lee Chul-Ku;Kim Tae-Hyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Material degradation is a multibillion-dollar problem which affects all the industries amongst others. The last decades have seen the development of newer and more effective techniques such as Focused-ion beam(FIB), Transmission electron microscopy(TEM), Secondary-ion mass spectroscopy(SIMS), auger electron spectroscopy(AES), X-ray Photoelectron spectroscopy(XPS) , Electrochemical impedance spectroscopy(EIS), Photo- stimulated luminescence spectroscopy(PSLS), etc. to study various forms of material degradation. These techniques are now used routinely to obtain information on the chemical state, depth profiling, composition, stress state, etc. to understand the degradation behavior. This paper describes the use of these techniques specifically applied to materials degradation and failure analysis.

Fabrication of an HTS DC SQUID Electronic Gradiometer and it's application in NDE system (고온 초전도 Electronic Gradiometer의 제작과 NDE system 에의 응용)

  • Kim, Jin-Young;Han, Sung-Gun;Kang, Joon-Hee;Lee, Eun-Hong;Song, I-Hun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.120-123
    • /
    • 1999
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test material. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Design and Construction of an HTS DC SQUID Electronic Gradiometer NDE system

  • Kim, J.Y.;Han, S.G.;Kang, J.H.;Lee, E.H.;Song, I.H.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.115-119
    • /
    • 2000
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test piece. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.

Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log - (비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 -)

  • Park, Heon;Gang, Eun-Chang;Chun, Sung-Jin;Yoon, Kyung-Seob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

Dynamic Modulus of Three-Layer Boards with Different Furnish and Shelling Ratio

  • Rofii, Muhammad Navis;Prayitno, Tibertius Agus;Suzuki, Shigehiko
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.274-282
    • /
    • 2016
  • This aims of this study were to investigate the relationship between non-destructive evaluation (NDE) and actual bending properties of particleboard, and to predict the bending properties of three-layer particleboard. Three kinds of raw materials, i.e. Hinoki (Chamaecyparis obtusa Endl.) strand, knife-milled Douglas-fir (Pseudotsuga manziesii (Mirb) Franco), and hammer-milled matoa (Pometia spp.) obtained from wooden industry, were utilized as furnish for experimental panel with methylene diphenyl diisocyanate (MDI) resin as binder. The NDE test was conducted by hit sounds using an FFT analyzer according to the spectrum peak of wave frequency, while the static bending test was conducted according to JIS A-5908. The results reveal that the dynamic Young's modulus as an NDE test has a potential for being used to predict the elastic bending of particleboards by a specific equation for adjusting its proper values. The values of NDE and static test are significantly different with a deviation range at 3-20%. The bending stiffness of three-layer particleboards manufactured from different wood species is predictable by observing the bending stiffness of two elements based on the thickness of its layers. The predicted values of bending stiffness and static test are significantly different with a deviation range at 5-24%.

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).