• Title/Summary/Keyword: NCAP-Network Capable Application Processor

Search Result 5, Processing Time 0.017 seconds

Implementation of the Wireless Transducer Interface Module and NCAP architecture (무선 센서 인터페이스 모듈과 NCAP 구조의 구현)

  • Oh, Se-Moon;Keum, Min-Ha;Kim, Dong-Hyeok;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1261-1269
    • /
    • 2008
  • This paper presents an implementation of the Network Capable Application Processor (NCAP) and the Wireless Transducer Interface Module (WTIM) architectures based on the new IEEE P1451.5 standard. Proposed architecture is implemented using a computer for NCAP, an FPGA board, a sensor board and two radio modules, which communicate through the ZigBee wireless communication technology between the NCAP and the WTIM based on the IEEE 1451.0 and the IEEE 1451.5 interfaces. In this paper, two experiments has been done to verify operations of proposed architecture. From the experimental results, we verify that the proposed architecture performs the wireless sensor communication functions efficiently.

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

A Study on the application of IEEE 1451 for efficient measurement system (효과적인 계측시스템을 위한 IEEE 1451 적용에 관한 연구)

  • Cho, Hyang-Duck;Park, Woo-Il;Moon, Se-Sang;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.983-986
    • /
    • 2007
  • In this paper, we addressed the IEEE 1451.x that can organize a sensor network for efficient measurement system. IEEE 1451 provides standard interface, specification and Object model for example Network Capable Application Processor(NCAP), Transducer Electronic Data Sheet(TEDS), Smart Transducer Interface Module (STIM) and so on. Especially IEEE 1451.2 defines the TEDS Formats and STIM. The TEDS makes transducer to be used independently from device. NCAP makes the component of measurement system to be handled as an object. Therefore each function block constructs system by using Add-on. IEEE 1451.x can be expend the system with Add-on and Plug-and-Play by using smart sensor and connected with current network. We expect that this method can provide the efficiency and convenience when using the measurement system.

  • PDF

Implementation of Wired Sensor Network Interface Systems (유선 센서 네트워크 인터페이스 시스템 구현)

  • Kim, Dong-Hyeok;Keum, Min-Ha;Oh, Se-Moon;Lee, Sang-Hoon;Islam, Mohammad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.31-38
    • /
    • 2008
  • This paper describes sensor network system implementation for the IEEE 1451.2 standard which guarantees compatibilities between various wired sensors. The proposed system consists of the Network Capable Application Processor(NCAP) in the IEEE 1451.0, the Transducer Independent Interface(TII) in the IEEE 1451.2, the Transducer Electronic Data Sheet(TEDS) and sensors. The research goal of this study is to minimize and optimize system complexity for IC design. The NCAP is implemented using C language in personal computer environment. TII is used in the parallel port between PC and an FPGA application board. Transducer is implemented using Verilog on the FPGA application board. We verified the proposed system architecture based on the standards.

Implementation of IEEE 1451 based Dual CAN Module for Fault Tolerance of In-Vehicle Networking System (차량 네트워크 시스템의 결함 허용을 위한 IEEE 1451 기반 중복 CAN 모듈의 구현)

  • Lee, Jong-Gap;Kim, Man-Ho;Park, Jee-Hun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.753-759
    • /
    • 2009
  • As many systems depend on electronics in an intelligent vehicle, concern for fault tolerance is growing rapidly. For example, a car with its braking controlled by electronics and no mechanical linkage from brake pedal to calipers of front tires(brake-by-wire system) should be fault tolerant because a failure can come without any warning and its effect is devastating. In general, fault tolerance is usually designed by placing redundant components that duplicate the functions of the original module. In this way a fault can be isolated, and safe operation is guaranteed by replacing the faulty module with its redundant and normal module within a predefined interval. In order to make in-vehicle network fault tolerant, this paper presents the concept and design methodology of an IEEE 1451 based dual CAN module. In addition, feasibility of the dual CAN network was evaluated by implementing the dual CAN module.