• Title/Summary/Keyword: N2a cells

Search Result 3,335, Processing Time 0.037 seconds

B3GNT2, a Polylactosamine Synthase, Regulates Glycosylation of EGFR in H7721 Human Hepatocellular Carcinoma Cells

  • Qiu, Hao;Duan, Wei-Ming;Shu, Jie;Cheng, Hong-Xia;Wang, Wei-Ping;Huang, Xin-En;Chen, Hui-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10875-10878
    • /
    • 2015
  • The epidermal growth factor receptor (EGFR) is an important surface receptor with N-glycans in its extracellular domain, whose glycosylation is essential for its function, especially in tumor cells. Here, we demonstrated that polylactosamine is markedly increased in H7721 hepatocellular carcinoma cells after treatment with EGF, while it apparently declined after exposure to all-trans retinoic acid (ATRA). In the study of the enzymatic mechanism of this phenomenon, we explored changes in the expression of poly-N-acetyllactosamine (PLN) branching glycosyltransferases using RT-PCR. Among the four glycosyltransferases with altered expression, GnT-V was most elevated by EGF, while GnT-V and B3GNT2 were most declined by ATRA. Next, we conducted co-immunoprecipitation experiments to test whether B3GNT2 and EGFR associate with each other. We observed that EGFR is a B3GNT2-targeting protein in H7721 cells. Taken together, these findings indicated that the altered expression of B3GNT2 will remodel the PLN stucture of EGFR in H7721 cells, which may modify downstream signal transduction.

Study of Specific Oligosaccharide Structures Related with Swine Flu (H1N1) and Avian Flu, and Tamiflu as Their Remedy

  • Yoo, Eun-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.449-454
    • /
    • 2011
  • The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(${\alpha}2$-6) galactose(${\beta}1$-4)glucose or sialic acid(${\alpha}2$-3)galactose(${\beta}1$-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Quantitative Assessment of the Relative Antineoplastic Potential of the n-butanolic Leaf Extract of Annona Muricata Linn. in Normal and immortalized Human Cell Lines

  • George, V. Cijo;Kumar, D.R. Naveen;Rajkumar, V.;Suresh, P.K.;Kumar, R. Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.699-704
    • /
    • 2012
  • Natural products have been the target for cancer therapy for several years but there is still a dearth of information on potent compounds that may protect normal cells and selectively destroy cancerous cells. The present study was aimed to evaluate the cytotoxic potential of n-butanolic leaf extract of $Annona$ $muricata$ L. on WRL-68 (normal human hepatic cells), MDA-MB-435S (human breast carcinoma cells) and HaCaT (human immortalized keratinocyte cells) lines by XTT assay. Prior to cytotoxicity testing, the extract was subjected to phytochemical screening for detecting the presence of compounds with therapeutic potential. Their relative antioxidant properties were evaluated using the reducing power and $DPPH^*$radical scavenging assay. Since most of the observed chemo-preventive potential invariably correlated with the amount of total phenolics present in the extract, their levels were quantified and identified by HPLC analysis. Correlation studies indicated a strong and significant (P<0.05) positive correlation of phenolic compounds with free radical scavenging potential. The results revealed that the extract was moderately cytotoxic to normal cells with a mean IC50 value of 52.4 ${\mu}g$ when compared with those obtained for cancerous cells (IC50 values of 29.2 ${\mu}g$ for MDA-MB-435S and 30.1 ${\mu}g$ for HaCaT respectively). The study confirms the presence of therapeutically active antineoplastic compounds in the n-butanolic leaf extract of $Annona$ $muricata$. Isolation of the active metabolites from the extract is in prospect.

Effects of Hepcidin Hormone on the Gene Expression of Ferroportin and Divalent Metal Transporter 1 in Caco-2 Cells and J774 Cells (Caco-2 소장세포와 J774 대식세포에서 Hepcidin 호르몬이 철분 수송체 Ferroportin과 Divalent Metal Transporter 1의 유전자 발현에 미치는 영향)

  • Chae, Sun-Ju;Chung, Ja-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.721-728
    • /
    • 2008
  • Hepcidin is a peptide hormone produced by the liver, of which secretion is closely related to iron status in the body. However, little is known about the molecular mechanism(s) by which this peptide regulates body iron homeostasis. The purpose of this study was to determine the effects of hepcidin treatment within the physiological concentration range on the expressions of two different iron transporter proteins-ferroportin (FPN) and divalent metal transporter 1 (DMT1). Differentiated Caco-2 intestinal cells and macrophage J774 cells were treated with either synthetic hepcidin or hepcidin-rich fraction separated from human urine at the concentration of 10 nM and 100 nM for 24 hours. Results show that hepcidin treatment in differentiated Caco-2 cells or in J774 cells did not change the level of either FPN mRNA or DMT1 mRNA. On the other hand, hepcidin treatment at the dose of 100 nM significantly decreased the FPN protein levels and DMT1 protein levels in differentiated Caco-2 cells. Similarly, urinary hepcidin treatment (10 nM & 100 nM) also significantly decreased the levels of FPN and DMT1 proteins in J774 macrophage cells. These results showed that hepcidin might play an important role in the regulation of iron homeostasis by lowering the protein levels of iron transporter FPN and DMT1 both in enterocytes and in macrophage cells.

Micronucleus Test for the Classification of Chemical Mutagenicity according to Globally Harmonized System

  • Rim, Kyung-Taek;Kim, Hyeon-Yeong;Chung, Yong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • To classify the chemical hazard according to globally harmonized system of classification and labeling of chemicals (GHS), we investigated the genotoxicity of three chemicals, methyl myristate, 2-ethylhexanoic acid zinc salt, N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine, using male ICR mice bone marrow cells for the screening of micronucleus induction. Although these three chemicals have already been tested numerous times, a micronucleus test has not been conducted. The seven week-old male ICR mice were tested at three dosages for the three chemicals, respectively. After 24 h of oral administration with the three chemicals, the mice were sacrificed and their bone marrow cells were prepared for smearing slides. As a result of counting the micronucleated polychromatic erythrocyte (MNPCE) of 2,000 polychromatic erythrocytes, all treated groups expressed no statistically significant increase of MNPCE compared to the negative control group. There were no clinical signs related with the oral exposure of these three chemicals. It was concluded that these three chemicals did not induce micronucleus in the bone marrow cells of ICR mice, and there was no direct proportion with dosage. These results indicate that the three chemicals have no mutagenic potential under each test condition, and it is not classified these chemicals as mutagens by GHS.

Stimulation of Phospholipase D in HepG2 Cells After Transfection Using Cationic Liposomes

  • Lee, Sang Yoon;Lee, Yan;Choi, Joon Sig;Park, Jong Sang;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.931-935
    • /
    • 2013
  • Lipid events in liposome-mediated transfection (lipofection) are largely unknown. Here we studied whether phospholipase D (PLD), an important enzyme responsible for phospholipid breakdown, was affected during lipofection of HepG2 cells with a luciferase plasmid. Synthetic cholesterol (Chol) derivatives, including $3{\beta}$[L-ornithinamide-carbamoyl]Chol, [polyamidoamine-carbamoyl]Chol and $3{\beta}$[N-(N',N'-dimethylaminoethane)-carbamoyl]Chol, and a cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride were mixed with a helper lipid dioleoylphosphatidylethanolamine to form respective cationic liposomes. All cationic liposomes were found to stimulate PLD. Although orders of magnitude effects of the cationic liposomes on PLD stimulation did not consistently match those on cytotoxicity and luciferase expression, a causal relationship between PLD activation and cytotoxic effect was remarkable. PLD stimulation by the cationic liposomes was likely due to their amphiphilic characters, leading to membrane perturbation, as supported by similar results obtained with other membrane-perturbing chemicals such as oleate, melittin, and digitonin. Our results suggest that lipofection induces cellular lipid changes such as a PLD-driven phospholipid turnover.

N-nitroso-N-methylurea and N-nitroso-N-ethylurea Decrease in Nitric Oxide Production in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • N-nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU), direct alkylating chemical mutagens and carcinogens, are shown to be the upregulators of cellular $NF-{\kappa}B$, regulating various genes that mediate tumorigenesis and carcinogenesis. Nitric oxide (NO), a toxic reactive radical gas, has been known to induce programmed cell death or apoptosis in various cells. Therefore, the assessment of NO production was examined to elucidate the possible contribution of NO release to the chemical carcinogenic potency of NMU and NEU in human skin cells. NMU and NEU did not alter the NO production, but they caused a significant downregulation of the NO generation on lipopolysaccharide (LPS)-induced NO production at concentrations ranging from $2{\sim}5{\mu}M$. The degree of downregulation of NO by NMU and NEU decreased up to 15% and 20%, respectively, compared to the control. These results demonstrate that the LPS-inducible keratinocytes NO synthase is involved in modulating carcinogenic potency by NMU and NEU, and the regulation of the cellular $NF-{\kappa}B$ activity by NMU and NEU is negatively correlated with the level of LPS-induced NO production in human skin cells. The findings of this study suggest the hypothesis that NMU and NEU-induced carcinogenesis may be associated with the downregulation of NO production, and the inducible NO may play an important role in NMU and NEU-induced carcinogenicity in human epidermal keratinocytes.

n-Butanol Extract of Mulberry Leaves Suppresses LPS-induced Inflammatory Cytokines and Modulates Osteogenic Differentiation in Periodontal Ligament Cells (뽕잎 n-부탄올 추출물의 치주인대세포에서 LPS로 유도된 염증성 사이토카인의 억제와 골 형성 분화 조절)

  • Choi, Jeong Lee;Kim, Dae Keun;Kim, Eun Hee;Lee, Jeong Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.309-314
    • /
    • 2015
  • Periodontitis is a chronic inflammatory disease that is known to have the characteristics of destructed periodontal tissue. Anti-oxidant and anti-inflammatory effects of mulberry leaves in periodontal tissue is not well known until now. We investigated the effects of n-butanol extract of mulberry leaves on the lipopolysaccharide (LPS)-induced proinflammatory cytokines, such as $IL-1{\beta}$, IL-6, IL-8 and modulates osteogenic differentiation in periodontal ligament cells. The expression levels of Runx2, ALP and mRNA were increased by n-butanol extract of mulberry leaves at the concentration of $100{\mu}g/ml$ in periodontal ligament cells. n-Butanol extract of mulberry leaves extract reduced the range of pathophysiological processes, such as inflammation and increase in the level of osteogenic-related genes. These findings suggest that n-butanol extract of mulberry leaves has therapeutic effects on periodontitis and periodontal tissue regeneartion.

A STUDY ON THE CYTOTOXICITY OF ROOT CANNAL SEALERS TO SEVERAL CELL LINES (근관 충전용 Sealer가 수종의 세포에 미치는 독성효과에 관한 연구)

  • Im, Mi-Kyung;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.263-286
    • /
    • 1992
  • This study was performed to evaluate and compare the cytotoxic effects of five root canal sealers to several different cell lines. Five root canal sealers were AH-26, N2, Sealapex, Tubliseal, and Vitapex. Each sealers were mixed according to the manufacturer's instructions, and culture media were added to each sealers immediately after mixing (the immediate group) and after three days (the third day group) and seven days (the seventh day group) respectively. And every sealer solutions were diluted to 1:1, 1:2, 1:3 and 1:4. Three different permanent cell lines (HEp-2, McCoy, MRC-S) and human gingival fibroblasts and mononuclear cells were challenged by each sealer solution and the cytopathic effects were evaluated using MTT-ELISA, MTT-microscopy, and lactate dehydrogenase (LD) activity. The results were as follows: 1. In HEp-2 and MRC-5 cells, Vitapex was the least cytotoxic sealers. 2. AH-26 showed mild cytotoxic effects to HEp-2, gingival fibroblast and mononuclear cells. 3. N2 was the most toxic sealer to gingival fibroblast and it showed relatively strong cytotoxicity to HEp-2, McCoy and MRC-S cells. 4. Tubliseal showed strong cytotoxic effects to HEp-2, McCoy, MRC-S, and mononuclear cells. 5. Sealapex showed strong cytotoxic effect to HEp-2, McCoy, and gingival fibroblasts.

  • PDF