DOI QR코드

DOI QR Code

Study of Specific Oligosaccharide Structures Related with Swine Flu (H1N1) and Avian Flu, and Tamiflu as Their Remedy

  • Yoo, Eun-Sun (Department of Oriental Medicine Industry, College of Environmental and Natural Sciences, Honam University)
  • Received : 2010.09.09
  • Accepted : 2011.01.25
  • Published : 2011.05.28

Abstract

The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(${\alpha}2$-6) galactose(${\beta}1$-4)glucose or sialic acid(${\alpha}2$-3)galactose(${\beta}1$-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.

Keywords

References

  1. Amaro, R. E., D. D. Minh, L. S. Cheng, W. M. Lindstrom Jr., A. J. Olson, J. H. Lin, W. W. Li, and J. A. McCammon. 2007. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 129: 7764-7765. https://doi.org/10.1021/ja0723535
  2. Aruksakunwong, O., M. Malaisree, P. Decha, P. Sompornpisut, V. Parasuk, S. Pianwanit, and S. Hannongbua. 2007. On the lower susceptibility of oseltamivir to influenza neuraminidase subtype N1 than those in N2 and N9. Biophys. J. 92: 798-807. https://doi.org/10.1529/biophysj.106.092528
  3. Babu, Y. S., P. Chand, S. Bantia, P. Kotian, A. Dehghani, Y. El- Kattan, et al. 2000. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43: 3482-3486. https://doi.org/10.1021/jm0002679
  4. Blick, T. J., A. Sahasrabudhe, M. McDonald, I. J. Owens, P. J. Morley, R. J. Fenton, and J. L. McKimm-Breschkin. 1998. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Viology 246: 95-103. https://doi.org/10.1006/viro.1998.9194
  5. Bradley, D. 2005. Star role for bacteria in controlling flu pandemic? Nat. Rev. Drug Discov. 4: 945-946. https://doi.org/10.1038/nrd1917
  6. Brown, I. H. 2000. The epidemiology and evolution of influenza viruses in pigs. Vet. Microbiol. 74: 29-46. https://doi.org/10.1016/S0378-1135(00)00164-4
  7. Brown, I. H., P. A. Harris, J. W. McCauley, and D. J. Alexander. 1998. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J. Gen. Virol. 79: 2947-2955.
  8. Calfree, D. P. and F. G. Hayden. 1998. New approaches to influenza chemotherapy: Neuraminidase inhibitors. Drug 56: 537-553. https://doi.org/10.2165/00003495-199856040-00003
  9. Chachra, R. and R. C. Rizzo. 2008. Origins of resistance conferred by the R292K neuraminidase mutation via molecular dynamics and free energy calculations. J. Chem. Theory Comput. 4: 1526-1540. https://doi.org/10.1021/ct800068v
  10. Cheng, L. S., R. E. Amaro, D. Xu, W. W. Li, P. W. Arzberger, and J. A. McCammon. 2008. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J. Med. Chem. 51: 3878-3894. https://doi.org/10.1021/jm8001197
  11. Collins, P. J., L. F. Haire, Y. P. Lin, J. Liu, R. J. Russell, P. A. Walker, et al. 2008. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature (London) 453: 1258-1261. https://doi.org/10.1038/nature06956
  12. de Jong, J. C., P. P. Heinen, W. L. A. Loeffen, A. P. van Nieuwstadt, E. C. J. Claas, T. M. Bestebroer, et al. 2001. Antigenic and molecular heterogeneity in recent swine influenza A (H1N1) virus isolates with possible implications for vaccination policy. Vaccine 19: 4452-4464. https://doi.org/10.1016/S0264-410X(01)00190-6
  13. Gallaher, W. R. 2009. Toward a sane and rational approach to management of influenza H1N1 2009. Virol. J. 6: 51-57. https://doi.org/10.1186/1743-422X-6-51
  14. Gubareva, L. V., L. Kaiser, and F. G. Hayden. 2000. Influenza virus neuraminidase, inhibitors. Lancet 355: 827-835. https://doi.org/10.1016/S0140-6736(99)11433-8
  15. Gubareva, L. V., M. J. Robinson, R. C. Bethell, and R. G. Webster. 1997. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino- Neu5Ac2en. J. Virol. 71: 3385-3390.
  16. Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka. 2001. Molecular basis of high virulence of Hong Kong H5N1 influenza A viruses. Science 7: 1840-1842.
  17. Jung, K. and D. S. Song. 2007. Evidence of the cocirculation of influenza H1N1, H1N2 and H3N2 viruses in the pig population of Korea. Vet. Rec. 161: 104-105. https://doi.org/10.1136/vr.161.3.104
  18. Kim, C. U., W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, et al. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119: 681-690. https://doi.org/10.1021/ja963036t
  19. Kim, C. U., X. Chen, and D. B. Mendel. 1999. Neuraminidase inhibitors as anti-influenza virus agents. Antivir. Chem. Chemother. 10: 141-154.
  20. Kosakovsky Pond, S. L. and S. D. W. Frost. 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22: 1208-1222. https://doi.org/10.1093/molbev/msi105
  21. Landers, J. J., Z. Cao, I. Lee, L. T. Piehler, P. P. Mye, A. Mye, T. Hamouda, A. T. Galecki, and J. R. Baker Jr. 2002. Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. J. Infect. Dis. 186: 1222-1230. https://doi.org/10.1086/344316
  22. Laver, G. 2006. Antiviral drugs for influenza: Tamiflu past, present and future. Future Virol. 1: 577-586. https://doi.org/10.2217/17460794.1.5.577
  23. Layne, S. P., A. S. Monto, and J. K. Taubenberger. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561. https://doi.org/10.1126/science.323.5921.1560
  24. Le, Q. M., Y. Sakai-Tagawa, M. Ozawa, M. Ito, and Y. Kawaoka. 2009. Selection of H5N1 influenza virus PB2 during replication in humans. J. Virol. 83: 5278-5281. https://doi.org/10.1128/JVI.00063-09
  25. Lew, W., X. Chen, and C. U. Kim. 2000. Discovery and development of GS4104 (oseltamivir): An orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 7: 663-672. https://doi.org/10.2174/0929867003374886
  26. Malaisree, M., T. Rungrotmongkol, P. Decha, P. Intharathep, O. Aruksakunwong, and S. Hannongbua. 2008. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins 71: 1908-1918. https://doi.org/10.1002/prot.21897
  27. Mitrasinovic, P. M. 2009. On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys. Chem. 140:. 35-38. https://doi.org/10.1016/j.bpc.2008.11.004
  28. Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem. 19: 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  29. Nelson, D. L. and M. M. Cox. 2008. Lehninger's Principles of Biochemistry, pp. 259-260, 5th Ed. W. H. Freeman and Company, New York.
  30. Neumann, G., T. Noda, and Y. Kawaoka. 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931-939. https://doi.org/10.1038/nature08157
  31. Ohuchi, M., N. Asaoka, T. Sakai, and R. Ohuchi. 2006. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 8: 1287-1293. https://doi.org/10.1016/j.micinf.2005.12.008
  32. Pensaert, M., K. Ottis, J. Vanderputte, M. M. Kaplan, and P. A. Buchmann. 1981. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential for man. Bull. World Health Organ. 59: 75-78.
  33. Racaniello, V. http://www.virology.ws/2009/05/04 influenza virus. Columbia University Medical Center.
  34. Rancaniello, V. R. and P. Palese. 1979. Isolation of influenza C virus recombinants. J. Virol. 32: 1006-1014.
  35. Russell, R. J., L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin, and J. J. Skehe. 2006. The structure of H5N1 avial influenza neuraminidase suggests new opportunities for drug design. Nature 443: 45-49. https://doi.org/10.1038/nature05114
  36. Schnitzler, S. U. and P. Schnitzler. 2009. An update on swineorigin influenza virus A/H1N1: A review. Virus Genes 39: 279-292. https://doi.org/10.1007/s11262-009-0404-8
  37. Shope, R. E. and P. Lewis. 1931. Swine influenza: Experimental transmission and pathology. J. Exp. Med. 54: 349-359. https://doi.org/10.1084/jem.54.3.349
  38. Sills, J. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561. https://doi.org/10.1126/science.323.5921.1560
  39. Shortridge, K. F., R. G. Webster, W. K. Butterfield, and C. H. Campbell. 1977. Persistence of Hong Kong influenza virus variants in pigs. Science 196: 1454-1455. https://doi.org/10.1126/science.867041
  40. Smith, G. J. D., D. Vijaykrishna, J. Bahl, S. J. Lycett, M. Worobey, O. G. Pybus, et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1121-1125.
  41. Taylor, N. R. and M. von Itzstein. 1994. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J. Med. Chem. 37: 616-624. https://doi.org/10.1021/jm00031a011
  42. Trifonov, V., H. Khiabanian, B. Greenbaum, and R. Rabadan. 2009. The origin of the recent swine influenza A (H1N1) virus infecting humans. Euro Surveill. 14: 19193.
  43. Tumpey, T. M. and J. A. Belser. 2009. Resurrected pandemic influenza viruses. Annu. Rev. Microbiol. 63: 79-98. https://doi.org/10.1146/annurev.micro.091208.073359
  44. Varghese, J. N., W. G. Laver, and P. M. Colman. 1983. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303: 35-50. https://doi.org/10.1038/303035a0
  45. von Itzstein, M., J. C. Dyason, S. W. Oliver, H. F. White, W. Y. Wu, G. B. Kok, and M. S. Pegg. 1996. A study of the active site of influenza virus sialidase: An approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39: 388- 391. https://doi.org/10.1021/jm950294c
  46. von Itzstein, M., W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, et al. 1993. Rational design of potent sialidasebased inhibitors of influenza virus replication. Nature (London) 363: 418-423. https://doi.org/10.1038/363418a0
  47. Wang, N. X. and J. J. Zheng. 2009. Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci. 18: 707-715.
  48. Xu, X., X. Zhu, R. A. Dwek, J. Stevens, and I. A. Wilson. 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J. Virol. 82: 10493-10501. https://doi.org/10.1128/JVI.00959-08

Cited by

  1. Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu vol.22, pp.2, 2011, https://doi.org/10.4062/biomolther.2014.005
  2. 신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할 vol.28, pp.11, 2011, https://doi.org/10.5352/jls.2018.28.11.1379