References
- Amaro, R. E., D. D. Minh, L. S. Cheng, W. M. Lindstrom Jr., A. J. Olson, J. H. Lin, W. W. Li, and J. A. McCammon. 2007. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 129: 7764-7765. https://doi.org/10.1021/ja0723535
- Aruksakunwong, O., M. Malaisree, P. Decha, P. Sompornpisut, V. Parasuk, S. Pianwanit, and S. Hannongbua. 2007. On the lower susceptibility of oseltamivir to influenza neuraminidase subtype N1 than those in N2 and N9. Biophys. J. 92: 798-807. https://doi.org/10.1529/biophysj.106.092528
- Babu, Y. S., P. Chand, S. Bantia, P. Kotian, A. Dehghani, Y. El- Kattan, et al. 2000. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43: 3482-3486. https://doi.org/10.1021/jm0002679
- Blick, T. J., A. Sahasrabudhe, M. McDonald, I. J. Owens, P. J. Morley, R. J. Fenton, and J. L. McKimm-Breschkin. 1998. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Viology 246: 95-103. https://doi.org/10.1006/viro.1998.9194
- Bradley, D. 2005. Star role for bacteria in controlling flu pandemic? Nat. Rev. Drug Discov. 4: 945-946. https://doi.org/10.1038/nrd1917
- Brown, I. H. 2000. The epidemiology and evolution of influenza viruses in pigs. Vet. Microbiol. 74: 29-46. https://doi.org/10.1016/S0378-1135(00)00164-4
- Brown, I. H., P. A. Harris, J. W. McCauley, and D. J. Alexander. 1998. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J. Gen. Virol. 79: 2947-2955.
- Calfree, D. P. and F. G. Hayden. 1998. New approaches to influenza chemotherapy: Neuraminidase inhibitors. Drug 56: 537-553. https://doi.org/10.2165/00003495-199856040-00003
- Chachra, R. and R. C. Rizzo. 2008. Origins of resistance conferred by the R292K neuraminidase mutation via molecular dynamics and free energy calculations. J. Chem. Theory Comput. 4: 1526-1540. https://doi.org/10.1021/ct800068v
- Cheng, L. S., R. E. Amaro, D. Xu, W. W. Li, P. W. Arzberger, and J. A. McCammon. 2008. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J. Med. Chem. 51: 3878-3894. https://doi.org/10.1021/jm8001197
- Collins, P. J., L. F. Haire, Y. P. Lin, J. Liu, R. J. Russell, P. A. Walker, et al. 2008. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature (London) 453: 1258-1261. https://doi.org/10.1038/nature06956
- de Jong, J. C., P. P. Heinen, W. L. A. Loeffen, A. P. van Nieuwstadt, E. C. J. Claas, T. M. Bestebroer, et al. 2001. Antigenic and molecular heterogeneity in recent swine influenza A (H1N1) virus isolates with possible implications for vaccination policy. Vaccine 19: 4452-4464. https://doi.org/10.1016/S0264-410X(01)00190-6
- Gallaher, W. R. 2009. Toward a sane and rational approach to management of influenza H1N1 2009. Virol. J. 6: 51-57. https://doi.org/10.1186/1743-422X-6-51
- Gubareva, L. V., L. Kaiser, and F. G. Hayden. 2000. Influenza virus neuraminidase, inhibitors. Lancet 355: 827-835. https://doi.org/10.1016/S0140-6736(99)11433-8
- Gubareva, L. V., M. J. Robinson, R. C. Bethell, and R. G. Webster. 1997. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino- Neu5Ac2en. J. Virol. 71: 3385-3390.
- Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka. 2001. Molecular basis of high virulence of Hong Kong H5N1 influenza A viruses. Science 7: 1840-1842.
- Jung, K. and D. S. Song. 2007. Evidence of the cocirculation of influenza H1N1, H1N2 and H3N2 viruses in the pig population of Korea. Vet. Rec. 161: 104-105. https://doi.org/10.1136/vr.161.3.104
- Kim, C. U., W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, et al. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119: 681-690. https://doi.org/10.1021/ja963036t
- Kim, C. U., X. Chen, and D. B. Mendel. 1999. Neuraminidase inhibitors as anti-influenza virus agents. Antivir. Chem. Chemother. 10: 141-154.
- Kosakovsky Pond, S. L. and S. D. W. Frost. 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22: 1208-1222. https://doi.org/10.1093/molbev/msi105
- Landers, J. J., Z. Cao, I. Lee, L. T. Piehler, P. P. Mye, A. Mye, T. Hamouda, A. T. Galecki, and J. R. Baker Jr. 2002. Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. J. Infect. Dis. 186: 1222-1230. https://doi.org/10.1086/344316
- Laver, G. 2006. Antiviral drugs for influenza: Tamiflu past, present and future. Future Virol. 1: 577-586. https://doi.org/10.2217/17460794.1.5.577
- Layne, S. P., A. S. Monto, and J. K. Taubenberger. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561. https://doi.org/10.1126/science.323.5921.1560
- Le, Q. M., Y. Sakai-Tagawa, M. Ozawa, M. Ito, and Y. Kawaoka. 2009. Selection of H5N1 influenza virus PB2 during replication in humans. J. Virol. 83: 5278-5281. https://doi.org/10.1128/JVI.00063-09
- Lew, W., X. Chen, and C. U. Kim. 2000. Discovery and development of GS4104 (oseltamivir): An orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 7: 663-672. https://doi.org/10.2174/0929867003374886
- Malaisree, M., T. Rungrotmongkol, P. Decha, P. Intharathep, O. Aruksakunwong, and S. Hannongbua. 2008. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins 71: 1908-1918. https://doi.org/10.1002/prot.21897
- Mitrasinovic, P. M. 2009. On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys. Chem. 140:. 35-38. https://doi.org/10.1016/j.bpc.2008.11.004
- Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem. 19: 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
- Nelson, D. L. and M. M. Cox. 2008. Lehninger's Principles of Biochemistry, pp. 259-260, 5th Ed. W. H. Freeman and Company, New York.
- Neumann, G., T. Noda, and Y. Kawaoka. 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931-939. https://doi.org/10.1038/nature08157
- Ohuchi, M., N. Asaoka, T. Sakai, and R. Ohuchi. 2006. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 8: 1287-1293. https://doi.org/10.1016/j.micinf.2005.12.008
- Pensaert, M., K. Ottis, J. Vanderputte, M. M. Kaplan, and P. A. Buchmann. 1981. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential for man. Bull. World Health Organ. 59: 75-78.
- Racaniello, V. http://www.virology.ws/2009/05/04 influenza virus. Columbia University Medical Center.
- Rancaniello, V. R. and P. Palese. 1979. Isolation of influenza C virus recombinants. J. Virol. 32: 1006-1014.
- Russell, R. J., L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin, and J. J. Skehe. 2006. The structure of H5N1 avial influenza neuraminidase suggests new opportunities for drug design. Nature 443: 45-49. https://doi.org/10.1038/nature05114
- Schnitzler, S. U. and P. Schnitzler. 2009. An update on swineorigin influenza virus A/H1N1: A review. Virus Genes 39: 279-292. https://doi.org/10.1007/s11262-009-0404-8
- Shope, R. E. and P. Lewis. 1931. Swine influenza: Experimental transmission and pathology. J. Exp. Med. 54: 349-359. https://doi.org/10.1084/jem.54.3.349
- Sills, J. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561. https://doi.org/10.1126/science.323.5921.1560
- Shortridge, K. F., R. G. Webster, W. K. Butterfield, and C. H. Campbell. 1977. Persistence of Hong Kong influenza virus variants in pigs. Science 196: 1454-1455. https://doi.org/10.1126/science.867041
- Smith, G. J. D., D. Vijaykrishna, J. Bahl, S. J. Lycett, M. Worobey, O. G. Pybus, et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1121-1125.
- Taylor, N. R. and M. von Itzstein. 1994. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J. Med. Chem. 37: 616-624. https://doi.org/10.1021/jm00031a011
- Trifonov, V., H. Khiabanian, B. Greenbaum, and R. Rabadan. 2009. The origin of the recent swine influenza A (H1N1) virus infecting humans. Euro Surveill. 14: 19193.
- Tumpey, T. M. and J. A. Belser. 2009. Resurrected pandemic influenza viruses. Annu. Rev. Microbiol. 63: 79-98. https://doi.org/10.1146/annurev.micro.091208.073359
- Varghese, J. N., W. G. Laver, and P. M. Colman. 1983. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303: 35-50. https://doi.org/10.1038/303035a0
- von Itzstein, M., J. C. Dyason, S. W. Oliver, H. F. White, W. Y. Wu, G. B. Kok, and M. S. Pegg. 1996. A study of the active site of influenza virus sialidase: An approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39: 388- 391. https://doi.org/10.1021/jm950294c
- von Itzstein, M., W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, et al. 1993. Rational design of potent sialidasebased inhibitors of influenza virus replication. Nature (London) 363: 418-423. https://doi.org/10.1038/363418a0
- Wang, N. X. and J. J. Zheng. 2009. Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci. 18: 707-715.
- Xu, X., X. Zhu, R. A. Dwek, J. Stevens, and I. A. Wilson. 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J. Virol. 82: 10493-10501. https://doi.org/10.1128/JVI.00959-08
Cited by
- Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu vol.22, pp.2, 2011, https://doi.org/10.4062/biomolther.2014.005
- 신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할 vol.28, pp.11, 2011, https://doi.org/10.5352/jls.2018.28.11.1379