• Title/Summary/Keyword: N2K

Search Result 39,086, Processing Time 0.06 seconds

Embedding Algorithm between [ 22n-k×2k] Torus and HFN(n,n), HCN(n,n) ([ 22n-k×2k] 토러스와 HFN(n,n), HCN(n,n) 사이의 임베딩 알고리즘)

  • Kim, Jong-Seok;Kang, Min-Sik
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.327-332
    • /
    • 2007
  • In this paper, we will analysis embedding between $2^{2n-k}{\times}2^k$ torus and interconnection networks HFN(n,n), HCN(n,n). First, we will prove that $2^{2n-k}{\times}2^k$ torus can be embedded into HFN(n,n) with dilation 3, congestion 4 and the average dilation is less than 2. And we will show that $2^{2n-k}{\times}2^k$ torus can be embedded into HCN(n,n) with dilation 3 and the average dilation is less than 2. Also, we will prove that interconnection networks HFN(n,n) and HCN(n,n) can be embedded into $2^{2n-k}{\times}2^k$ torus with dilation O(n). These results mean so many developed algorithms in torus can be used efficiently in HFN(n,n) and HCN(n,n).

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

SELF-RECIPROCAL POLYNOMIALS WITH RELATED MAXIMAL ZEROS

  • Bae, Jaegug;Kim, Seon-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.983-991
    • /
    • 2013
  • For each real number $n$ > 6, we prove that there is a sequence $\{pk(n,z)\}^{\infty}_{k=1}$ of fourth degree self-reciprocal polynomials such that the zeros of $p_k(n,z)$ are all simple and real, and every $p_{k+1}(n,z)$ has the largest (in modulus) zero ${\alpha}{\beta}$ where ${\alpha}$ and ${\beta}$ are the first and the second largest (in modulus) zeros of $p_k(n,z)$, respectively. One such sequence is given by $p_k(n,z)$ so that $$p_k(n,z)=z^4-q_{k-1}(n)z^3+(q_k(n)+2)z^2-q_{k-1}(n)z+1$$, where $q_0(n)=1$ and other $q_k(n)^{\prime}s$ are polynomials in n defined by the severely nonlinear recurrence $$4q_{2m-1}(n)=q^2_{2m-2}(n)-(4n+1)\prod_{j=0}^{m-2}\;q^2_{2j}(n),\\4q_{2m}(n)=q^2_{2m-1}(n)-(n-2)(n-6)\prod_{j=0}^{m-2}\;q^2_{2j+1}(n)$$ for $m{\geq}1$, with the usual empty product conventions, i.e., ${\prod}_{j=0}^{-1}\;b_j=1$.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

Embedding Algorithms among $2^{2n-k}\times2^k$ Torus and HFN(n,n) ($2^{2n-k}\times2^k$ 토러스와 HFN(n,n)의 상호 임베딩)

  • Kang, Min-Sik;Kim, Jong-Seok;Lee, Hyeong-Ok;Heo, Yeong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.111-114
    • /
    • 2002
  • 임베딩은 어떤 연결망이 다른 연결망 구조에 포함 혹은 어떻게 연관되어 있는지를 알아보기 위해 어떤 특정한 연결망을 다른 연결망에 사상하는 것으로, 특정한 연결망에서 사용하던 여러 가지 알고리즘을 다른 연결망에서 효율적으로 이용할 수 있도록 한다. 본 논문에서는 $2^{2n-k}\times2^k$ 토러스를 HFN(n,n)에 연장율 3, 밀집율 4 로 임베딩 가능함을 보이고, HFN(n,n)을 $2^{2n-k}\times2^k$ 토러스에 연장율 O(N)으로 임베딩됨을 보인다($N=2^n$).

  • PDF

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

  • Pang, Tian-Xiao;Lin, Zheng-Yan;Jiang, Ye;Hwang, Kyo-Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.993-1005
    • /
    • 2008
  • Let {$X,\;X_n;n{\geq}1$} be a sequence of i.i.d. random variables. Set $S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$. Then we obtain that for any -1$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$ if and only if EX=0 and $EX^2={\sigma}^2<{\infty}$.

Analysis of Bisection width and Fault Diameter for Hyper-Star Network HS(2n, n) (상호연결망 하이퍼-스타 HS(2n, n)의 이분할 에지수와 고장지름 분석)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.499-506
    • /
    • 2005
  • Recently, Hyper-Star network HS(m,k) which improves the network cost of hypercube has been proposed. In this paper, we show that the bisection width of regular Hyper-Star network HS(2n,n) is maximum (2n-2,n-1). Using the concept of container, we also show that k-wide diameter of HS(2n,n) is less than dist(u,v)+4, and the fault diameter is less than D(HS(2n,n))+2, where dist(u,v) is the shortest path length between any two nodes u and v in HS(2n,n), and D(HS(2n,n)) is its diameter.

Embedding Algorithm of 2$^{2n-k}$$\times$2$^{k}$ Torus on HCN(n,n) (2$^{2n-k}$$\times$2$^{k}$ 토러스의 HCN(n,n)에 대한 임베딩 알고리즘)

  • 강민식;김종석;이형옥;허영남
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.697-699
    • /
    • 2002
  • 임베딩은 어떤 연결망이 다른 연결망 구조에 포함 흑은 어떻게 연관되어 있는지를 알아보기 위해 어떤 특정한 연결망을 다른 연결망에 사상하는 것으로, 특정한 연결망에서 사용하던 여러 가지 알고리즘을 다른 연결망에서 효율적으로 이용할 수 있도록 한다. 본 논문에서는 2$^{2n-k}$ $\times$2$^{k}$ 토러스를 HCN(n,n)에 연장율 3에 임베딩 가능함을 보인다.

  • PDF

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.