• Title/Summary/Keyword: N-nitro-L-arginine methyl ester (L-NAME).

Search Result 75, Processing Time 0.033 seconds

Mechanism of the relaxant action of imipramine in isolated rat aorta (흰쥐 대동맥에서 imipramine의 혈관이완 작용기전)

  • Kang, Hyung-sub;Lee, Sang-woo;Baek, Sung-su;Joe, Sung-gun;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.597-606
    • /
    • 2003
  • Although the antidepressant effects of imipramine (IMI) have been well known in several studies, the effects on cardiovascular system, particularly the vasorelaxant effects, have not known clearly. We hypothesis that IMI-induced vasorelaxation involves NO (nitrie oxide), activation of guanylate cyclase (GC) and $Ca^{2+}$ channel. The possible roles of the endothelium and $Ca^{2+}$ in IMI-induced responses were investigated using isolated rings of rat thoracic aorta and anesthesized rats. In KCl-precontracted rings. IMI produces endothelium-dependent and endothelium-independent relaxations in intact (+E) as well as endothelium-denuded (-E) rat aorta in a concentration-dependent manner. In phenylephrine (PE)-precontracted rings, the IMI-induced relaxation was significantly greater in +E rings. The IMI-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, a non-selective GC inhibitor, methylene blue, $Na^+$ channel blockers, lidocaine and procaine, or $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings, but not in PE-precontracted -E rings. These relaxations were also suppressed by lidocaine or procaine in -E aortic rings. However, IMI-induced relaxations were not inhibited by a PLC inhibitor 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC), an inositol monophosphatase inhibitor, lithium, indomethacin and dexamethasone in +E and -E rings. In vivo, infusion of IMI elicited significant decrease in arterial blood pressure. After intravenous injection of saponin, NOS inhibitors. MB and nifedipine, infusion of IMI inhibited the IMI-lowered blood pressure markedly. These findings suggest that the endothelium-dependent relaxation induced by IMI is mediated by activation of NO/cGMP signaling cascade or inhibition of $Ca^{2+}$ entry through voltage-gated channel, and this mechanism may contribute to the hypotensive effects of IMI in rats.

Inhibitory effects of xylamine on the arterial contraction in rats (흰쥐 대동맥 수축에 대한 xylamine의 억제효과)

  • Kim, Sang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2004
  • The therapeutic efficacy of xylamine in the field of psychological medicine has been recognized for years and the drug is used to treat depression and some other conditions, but little is known about its mechanism of action on vascular system. Therefore, the present study was designed to investigate the influence of xylamine on the contractile responses of isolated rat thoracic arteries to phenylephrine(PE) and potassium chloride(KCl). Xylamine produced a concentration-dependent relaxation in PE-precontracted endothelium intact(+E) rat aortic rings, but not in a KCl-precontracted aortic rings. Also, xylamine inhibited the PE-induced contraction in concentration-dependent manner, but not in the high KCl-induced contraction in +E rings. This concentration-dependent inhibition was suppressed by the removal of the endothelium (-E). The inhibitory effects of xylamine($0.3{\mu}M$) on the PE-induced contractions were suppressed by N(G)-nitro-L-arginine(L-NNA), N(omega)-nitro-L-arginine methyl ester(L-NAME), aminoguanidine, dexamethasone, methylene blue, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one(ODQ), indomethacin, ryanodine, tetrabutylammonium(TBA), lidocaine, procaine and 0 mM extracellular $Na^+$, but not by 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate(NCDC), lithium, nifedipine, verapamil, 0 mM extracellular $Ca^{2+}$, glibenclamide and clotrimazole. These findings suggest that xylamine could act as a vasorelaxant and direct inhibitor of arterial contraction. This vasorelaxation involves an endothelial nitric oxide (NO)/cGMP (guanosine 3',5'-cyclic monophosphate) pathway or cyclooxygenase system, and an interference with $Ca^{2+}$ release, TBA-sensitive $Ca^{2+}$-activated $K^+$ channels and $Na^+$$ channels.

Effect of Hydroalcoholic Extract of Ribes khorasanicum on Acute Hypertension Induced by L-NAME in Rat

  • Hamounpeima, Ismael;Hosseini, Mahmoud;Mohebbati, Reza;Shafei, Mohammad Naser
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.160-165
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the effect of Ribes khorasanicum (R. khorasanicum); a plant growing in north Khorasan of Iran; on cardiovascular and stress oxidative in acute hypertension induced by N-nitro-l-arginine methyl ester (L-NAME), anitric oxide synthase inhibitor. Methods: Rats were divided into Control, L-NAME (10 mg/kg), Sodium Nitroprusside (SNP) (50 mg/kg) + L-NAME and three treated groups with R. khorasanicum (4, 12 and 24 mg/kg) groups + L-NAME. L-NAME and SNP were injected intravenously and extract intraperitoneal. In R. khorasanicum groups, L-NAME was injected 30 min after injection of the extract. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were recorded continuously using power lab software. At the end of study oxidative stress parameters including of total thiol content (SH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in heart and aorta of all groups were also measured. Results: In groups 4 and 24 mg/kg extract +L-NAME, there was a non-significant decrease in SBP and MAP compared to L-NAME group but dose 12 mg/kg significantly attenuate the effect of L-NAME(P < 0.05). In L-NAME group the heart and aorta tissues antioxidant enzymes levels decreased, while in treated rats these enzymes significantly increased. Conclusion: The extract of R. khorasanicum in dose 12 mg/kg show anti-hypertensive effect that is mediated by an effect on NO system or antioxidant parameters.

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

  • Raisian, Dorsa;Erfanparast, Amir;Tamaddonfard, Esmaeal;Soltanalinejad-Taghiabad, Farhad
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Background: The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods: Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results: Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions: Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.

Effect of Lutein on L-NAME-Induced Hypertensive Rats

  • Sung, Ji Hoon;Jo, Young Soo;Kim, Su Jin;Ryu, Jeong Soo;Kim, Myung Chul;Ko, Hyun Ju;Sim, Sang Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.339-345
    • /
    • 2013
  • We investigated the antihypertensive effect of lutein on $N^G$-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. Daily oral administration of L-NAME (40 mg/kg)-induced a rapid progressive increase in mean arterial pressure (MAP). L-NAME significantly increased MAP from the first week compared to that in the control and reached $193.3{\pm}9.6$ mmHg at the end of treatment. MAP in the lutein groups was dose-dependently lower than that in the L-NAME group. Similar results were observed for systolic and diastolic blood pressure of L-NAME-induced hypertensive rats. The control group showed little change in heart rate for 3 weeks, whereas L-NAME significantly reduced heart rate from $434{\pm}26$ to $376{\pm}33$ beats/min. Lutein (2 mg/kg) significantly prevented the reduced heart rate induced by L-NAME. L-NAME caused hypertrophy of heart and kidney, and increased plasma lipid peroxidation four-fold but significantly reduced plasma nitrite and glutathione concentrations, which were significantly prevented by lutein in a dose-dependent manner. These findings suggest that lutein affords significant antihypertensive and antioxidant effects against L-NAME-induced hypertension in rats.

Involvement of Nitric Oxide and Prostanoid on Photorelaxation in Pig Renal Artery (UV-light 에 의한 혈관 이완작용에 있어서 nitric oxide와 prostanoid의 관련성)

  • Kim, Joo-Heon;Shim, Cheol-Soo;Jeon, Seok-Cheol
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • The effect of nitric oxide synthase(NOS) inhibita, $N^G$-nitro-L-arginine-methyl ester(L-NAME) and prostanoid synthesis inhibiter, indomethacin on the photorelaxation, when was exposed to the long-wave length UV-light, was examined on the precontraction by the phenylephrine in the isolated pig renal artery. 1. UV-light relaxed both with-endothelium and without-endothelium in the pig renal arterial ring contracted by the phenylephrine. The magnitude of photorelaxation was dependent on the exposure time for UV-light. 2. UV-Iight induced relaxation was inhibited by L-NAME and indomethacin on the precontraction by the phenylephrine in the isolated pig renal artery. 3. UV-Iight induced relaxation was inhibited by methylene blue on the precontraction by the phenylephrine in the isolated pig renal artery. These results suggest that UV-light induced photorelaxation may be due to cGMP involved both nitric oxide and prostanoid on the precontraction by the phenylephrine in the isolated pig renal artery.

L-NAME Inhibits Hyperalgesia Induced by Freund's Complete Adjuvant in Rat Paw (L-NAME에 의한 쥐의 발바닥에서 Freund's Complete Adjuvant에 의해 유발된 통증 억제)

  • Lee, Cheong;Choi, Yoon;Song, Myung-Hee;Leem, Joong-Woo;Lee, Dong-Myung;Raja, Srinivasa N.
    • The Korean Journal of Pain
    • /
    • v.11 no.2
    • /
    • pp.194-200
    • /
    • 1998
  • Background: Effect of nitric oxide on the hyperalgesia induced by inflammation is controversial. We attempted to find out the peripheral effects of nitric oxide (NO) on hyperalgesia induced by Freund's complete adjuvant (FCA) induced inflammation. Methods: Male Sprague Dawley rats were divided into three groups; control, low dose NG-nitro-L-arginine methyl ester (L-NAME, 500 ug), high dose L-NAME (5 mg). Inflammation was induced by injecting 0.1 ml of FCA intraplantarly, which shows typical hyperalgesia within twelve hours after injection and maintained for about one week. Drugs were injected 2 hours before, just before, and 3, 6, 9, 12 hours after the injection of FCA. Effect of L-NAME on hyperalgesia was assessed by measuring mechanical hyperalgesia and spontaneous pain for 3 days. Results: When injected at the site of inflammation, L-NAME caused dose dependent reduction of spontaneous hyperalgesia. Mechanical hyperalgesia was also reduced by high dose L-NAME (p<0.05). After systemic injection of high dose L-NAME in the back, no significant difference was noticed. Conclusions: This suggest that L-NAME reduces FCA induced hyperalgesia via peripheral action.

  • PDF

Diesel Exhaust Particles and Airway Inflammation: Effect of Nitric Oxide Synthase Inhibitors

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.121-128
    • /
    • 2002
  • This study was carried out to investigate if nitric oxide synthase (NOS) inhibitors modulate airway inflammation induced by diesel exhaust particles (DEP). N$\^$G/-nitro-L-arginine methyl ester (L-NAME), a potent constitutive NOS (cNOS) inhibitor, and aminoguanidine (AG), a selective inducible NOS (iNOS) inhibitor, were administered to mice in their drinking water for 7 weeks. Airway inflammation was elicited by the repeated intratracheal administration of DEP. The results showed that macrophages, inflammatory eosinophils and neutrophils in bronchoalveolar lavage (BAL) fluids by intratracheal DEP instillation were significantly suppressed in the mice treated with two NOS inhibitors toghther with DEP. The suppression of these cells was more effective in AG treated groups than in L -NAME treated groups. NOS inhibitor treatment also reduced interleukin -5 (IL-5 in the BAL fluids and lung homogenates. Additionally, it was found that eosinophil peroxidase (EPO) activity in the BAL fluids was also decreased by NOS inhibitor treatment. These results suggest that nitric oxide (NO) is produced in airway inflammation by repeated DEP instillation, and that iNOS inhibition as well as cNOS inhibition can play a modulating role in this airway inflammation by DEP.

Effects Evodiae Fructus on the Blood Pressure in Spontaneously Hypertensive Rats (오수유가 선천성고혈압흰쥐의 혈압에 미치는 영향)

  • 정수연;정수연;정수연;강주희;최기환;김주일
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.305-310
    • /
    • 2000
  • The present study examined the effect of a methanol extract of Evodiae Fructus on the blood pressure in spontaneously hypertensive rats (SHR). The systolic blood pressure was measured after rats were pretreated with phentolamine, propranolol, or $N_{\omega}$-nitro-$_{L}$-arginine methyl ester(NAME) and subsequently received methanol extract of Evodiae Fructus. In SHR, intraperitoneal administration of methanol extract of Evodiae Fructus (0.5 mg/kg) produced antihypertensive effect that lasted for at least 4 hours. Antihypertensive effect of Evodiae Fructus was more stronger than that with $\alpha$-adrenergic receptor antagonist phentolamine and was not affected by $\beta$-adrenergic receptor antagonist propranolol. The antihypertensive effect of Evodiae Fructus was abolished by pretreatment of NAME. Our findings suggest Evodiae Fructus has an hypertensive effect, which may be mediated through nitric oxide synthesis.s.

  • PDF

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.