DOI QR코드

DOI QR Code

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

  • Raisian, Dorsa (DVM Graduate, Faculty of Veterinary Medicine, Urmia University) ;
  • Erfanparast, Amir (Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University) ;
  • Tamaddonfard, Esmaeal (Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University) ;
  • Soltanalinejad-Taghiabad, Farhad (Division of Anatomy, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University)
  • Received : 2022.05.08
  • Accepted : 2022.07.15
  • Published : 2022.10.01

Abstract

Background: The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods: Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results: Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions: Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.

Keywords

Acknowledgement

This work was supported by Office of Vice Chancellor for Research of Urmia University (Grant No. 98-04-30/d-10-685/1667).

References

  1. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25: 243-54. https://doi.org/10.1016/j.niox.2011.06.004
  2. Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 2019; 89: 32-40. https://doi.org/10.1016/j.niox.2019.04.011
  3. Toda N, Kishioka S, Hatano Y, Toda H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology 2009; 110: 166-81. https://doi.org/10.1097/ALN.0b013e31819146a9
  4. Lotfipour S, Smith MT. Morphine hyposensitivity in streptozotocin-diabetic rats: reversal by dietary l-arginine treatment. Clin Exp Pharmacol Physiol 2018; 45: 42-9. https://doi.org/10.1111/1440-1681.12855
  5. Salighedar R, Erfanparast A, Tamaddonfard E, Soltanalinejad F. Medial prefrontal cortex oxytocin-opioid receptors interaction in spatial memory processing in rats. Physiol Behav 2019; 209: 112599. https://doi.org/10.1016/j.physbeh.2019.112599
  6. Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genomics 2019; 51: 432-42. https://doi.org/10.1152/physiolgenomics.00006.2019
  7. Qian Y, Wang Z, Zhou S, Zhao W, Yin C, Cao J, et al. MKP1 in the medial prefrontal cortex modulates chronic neuropathic pain via regulation of p38 and JNK1/2. Int J Neurosci 2020; 130: 643-52. https://doi.org/10.1080/00207454.2019.1667785
  8. Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol 2019; 56: 1137-66. https://doi.org/10.1007/s12035-018-1130-9
  9. Kummer KK, Mitric M, Kalpachidou T, Kress M. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci 2020; 21: 3440. https://doi.org/10.3390/ijms21103440
  10. Tamaddonfard E, Erfanparast A, Salighedar R, Tamaddonfard S. Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray. Naunyn Schmiedebergs Arch Pharmacol 2020; 393: 371-9. https://doi.org/10.1007/s00210-019-01735-x
  11. Tu Y, Jung M, Gollub RL, Napadow V, Gerber J, Ortiz A, et al. Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain 2019; 160: 1308-18. Erratum in: Pain 2020; 161: 230-1. https://doi.org/10.1097/j.pain.0000000000001747
  12. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 2019; 160: 53-9. https://doi.org/10.1097/j.pain.0000000000001365
  13. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 2014; 13: 924-35. https://doi.org/10.1016/S1474-4422(14)70102-4
  14. Challa SR. Surgical animal models of neuropathic pain: pros and cons. Int J Neurosci 2015; 125: 170-4. https://doi.org/10.3109/00207454.2014.922559
  15. Vila-Verde C, Marinho AL, Lisboa SF, Guimaraes FS. Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats. Neuroscience 2016; 320: 30-42. https://doi.org/10.1016/j.neuroscience.2016.01.040
  16. Liu W, Li Q, Ye B, Cao H, Shen F, Xu Z, et al. Repeated nitrous oxide exposure exerts antidepressant-like effects through neuronal nitric oxide synthase activation in the medial prefrontal cortex. Front Psychiatry 2020; 11: 837. https://doi.org/10.3389/fpsyt.2020.00837
  17. Liang HY, Chen ZJ, Xiao H, Lin YH, Hu YY, Chang L, et al. nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun 2020; 11: 2501. https://doi.org/10.1038/s41467-020-16198-5
  18. Salimi S, Tamaddonfard E. Microinjection of histamine and its H 3 receptor agonist and antagonist into the agranular insular cortex influence sensory and affective components of neuropathic pain in rats. Eur J Pharmacol 2019; 857: 172450. https://doi.org/10.1016/j.ejphar.2019.172450
  19. Taati M, Tamaddonfard E. Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor. Pharmacol Rep 2018; 70: 577-83. https://doi.org/10.1016/j.pharep.2017.12.010
  20. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. New York, Elsevier. 2007.
  21. Erfanparast A, Tamaddonfard E, Seyedin S. Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception. Iran J Basic Med Sci 2018; 21: 1275-80.
  22. Karimi S, Karami M, Sahraei H, Rahimpour M. Reversal effect of intra-central amygdala microinjection of L-arginine on place aversion induced by naloxone in morphine conditioned rats. Iran Biomed J 2011; 15: 92-9.
  23. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980; 20: 441-62. https://doi.org/10.1146/annurev.pa.20.040180.002301
  24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
  25. Bastuji H, Frot M, Perchet C, Magnin M, Garcia-Larrea L. Pain networks from the inside: spatiotemporal analysis of brain responses leading from nociception to conscious perception. Hum Brain Mapp 2016; 37: 4301-15. https://doi.org/10.1002/hbm.23310
  26. Xu N, Tang XH, Pan W, Xie ZM, Zhang GF, Ji MH, et al. Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depressionlike behaviors. Front Neurosci 2017; 11: 209. https://doi.org/10.3389/fnins.2017.00209
  27. Parvardeh S, Sabetkasaei M, Moghimi M, Masoudi A, Ghafghazi S, Mahboobifard F. Role of L-arginine/NO/cGMP/K ATP channel signaling pathway in the central and peripheral antinociceptive effect of thymoquinone in rats. Iran J Basic Med Sci 2018; 21: 625-33. https://doi.org/10.22038/ijbms.2018.26255.6438
  28. Fan W, Huang F, Wu Z, Zhu X, Li D, He H. The role of nitric oxide in orofacial pain. Nitric Oxide 2012; 26: 32-7. https://doi.org/10.1016/j.niox.2011.11.003
  29. Miranda HF, Noriega V, Sierralta F, Sotomayor-Zarate R, Aguilera V, Prieto JC. Nitric oxide mediated dexketoprofen antinociception. J Exp Res 2020; 8: 16-22.
  30. Fakhri S, Ahmadpour Y, Rezaei H, Kooshki L, Moradi SZ, Iranpanah A, et al. The antinociceptive mechanisms of melatonin: role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav Pharmacol 2020; 31: 728-37. https://doi.org/10.1097/FBP.0000000000000579
  31. Mohammadi S, Fakhri S, Mohammadi-Farani A, Farzaei MH, Abbaszadeh F. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav Pharmacol 2021; 32: 607-14. https://doi.org/10.1097/FBP.0000000000000655
  32. Zhuo M, Meller ST, Gebhart GF. Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain 1993; 54: 71-8. https://doi.org/10.1016/0304-3959(93)90101-T
  33. Iwamoto ET, Marion L. Pharmacological evidence that nitric oxide mediates the antinociception produced by muscarinic agonists in the rostral ventral medulla of rats. J Pharmacol Exp Ther 1994; 269: 699-708.
  34. Pan HL, Chen SR, Eisenach JC. Role of spinal NO in antiallodynic effect of intrathecal clonidine in neuropathic rats. Anesthesiology 1998; 89: 1518-23. https://doi.org/10.1097/00000542-199812000-00031
  35. Kawabata A, Fukuzumi Y, Fukushima Y, Takagi H. Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems. Eur J Pharmacol 1992; 218: 153-8. https://doi.org/10.1016/0014-2999(92)90159-2
  36. Roche AK, Cook M, Wilcox GL, Kajander KC. A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain 1996; 66: 331-41. https://doi.org/10.1016/0304-3959(96)03025-4
  37. Oh M, Lee W, Go Y. The antinociceptive effect of intraperitoneally administered nonselective nitric oxide synthase inhibitor on the rat formalin test. Korean J Pain 2006; 19: 142-5. https://doi.org/10.3344/kjp.2006.19.2.142
  38. Kampa M, Hatzoglou A, Notas G, Niniraki M, Kouroumalis E, Castanas E. Opioids are non-competitive inhibitors of nitric oxide synthase in T47D human breast cancer cells. Cell Death Differ 2001; 8: 943-52. https://doi.org/10.1038/sj/cdd/4400893
  39. Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107: 8-18. https://doi.org/10.1093/bja/aer115
  40. Chung E, Burke B, Bieber AJ, Doss JC, Ohgami Y, Quock RM. Dynorphin-mediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res Bull 2006; 70: 245-50. https://doi.org/10.1016/j.brainresbull.2006.05.008
  41. Javanmardi K, Parviz M, Sadr SS, Keshavarz M, Minaii B, Dehpour AR. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Clin Exp Pharmacol Physiol 2005; 32: 585-9. https://doi.org/10.1111/j.1440-1681.2005.04234.x
  42. Hafeshjani ZK, Karami M, Biglarnia M. Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain. Indian J Pharmacol 2012; 44: 443-7. https://doi.org/10.4103/0253-7613.99299
  43. Pol O. The involvement of the nitric oxide in the effects and expression of opioid receptors during peripheral inflammation. Curr Med Chem 2007; 14: 1945-55. https://doi.org/10.2174/092986707781368469
  44. Hervera A, Negrete R, Leanez S, Martin-Campos JM, Pol O. Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling. Mol Pain 2011; 7: 25. https://doi.org/10.1186/1744-8069-7-25
  45. Cadet P, Mantione K, Bilfinger TV, Stefano GB. Real-time RT-PCR measurement of the modulation of Mu opiate receptor expression by nitric oxide in human mononuclear cells. Med Sci Monit 2001; 7: 1123-8.
  46. Babey AM, Kolesnikov Y, Cheng J, Inturrisi CE, Trifilletti RR, Pasternak GW. Nitric oxide and opioid tolerance. Neuropharmacology 1994; 33: 1463-70. https://doi.org/10.1016/0028-3908(94)90050-7
  47. Heinzen EL, Booth RG, Pollack GM. Neuronal nitric oxide modulates morphine antinociceptive tolerance by enhancing constitutive activity of the mu-opioid receptor. Biochem Pharmacol 2005; 69: 679-88. https://doi.org/10.1016/j.bcp.2004.11.004
  48. Huang L, Wyse BD, Williams CM, Smith MT. Nitric oxide modulates μ-opioid receptor function in vitro. Clin Exp Pharmacol Physiol 2019; 46: 676-85. https://doi.org/10.1111/1440-1681.13091
  49. Cheriyan J, Sheets PL. Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J Neurosci 2018; 38: 4829-39 https://doi.org/10.1523/JNEUROSCI.2731-17.2018