• Title/Summary/Keyword: N-injective module

Search Result 39, Processing Time 0.02 seconds

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

INJECTIVE PROPERTY OF LAURENT POWER SERIES MODULE

  • Park, Sang-Won
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2001
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. Park generalized Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^S]$-module, where S is a submonoid of $\mathbb{N}$($\mathbb{N}$ is the set of all natural numbers). In this paper we extend the injective property to the Laurent power series module so that if R is a ring and E is an injective left R-module, then $E[[x^{-1},x]]$ is an injective left $R[x^S]$-module.

  • PDF

Injective Property Of Generalized Inverse Polynomial Module

  • Park, Sang-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.257-261
    • /
    • 2000
  • Northcott and Mckerrow proved that if R is a left noe-therian ring and E is an injective left R-module, then E[x-1] is an injective left R[x]-module. In this paper we generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an in-jective left R-module, then E[x-S] is an injective left R[xS]-module, where S is a submonoid of N (N is the set of all natural numbers).

  • PDF

HOM AND EXT FUNCTORS OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Han, Chang-Woo;Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.111-123
    • /
    • 2000
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[xl-module. Park generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^s]$-module, where S is a submonoid of N(N is the set of all natural numbers). In this paper we show $$Hom_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Hom_R(M,\;N)[[x^S]]$$ and using the above result and this isomorphism, finally we show that $$Ext^i_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Ext^i_R(M,\;N)[[x^S]]$$.

  • PDF

Semi M-Projective and Semi N-Injective Modules

  • Hakmi, Hamza
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-module [M, N] is regular if and only if a module N is semi M-projective and $Im({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$, if and only if a module M is semi N-injective and $Ker({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Im({\alpha}{\beta}){\subseteq}^{\oplus}N$, if and only if a module M is direct N-injective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Ker({\beta}{\alpha}){\subseteq}^{\oplus}M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF

INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP

  • Park, Sang-Won;Jeong, Jin-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.693-699
    • /
    • 2010
  • In this paper we show that the flat property of a left R-module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an R[x]-module, i.e., given an R-linear map f : M $\rightarrow$ N of left R-modules, we define $N+x^{-1}M[x^{-1}]$ as a left R[x]-module. Given an exact sequence of left R-modules $$0\;{\rightarrow}\;N\;{\rightarrow}\;E^0\;{\rightarrow}\;E^1\;{\rightarrow}\;0$$, where $E^0$, $E^1$ injective, we show $E^1\;+\;x^{-1}E^0[[x^{-1}]]$ is not an injective left R[x]-module, while $E^0[[x^{-1}]]$ is an injective left R[x]-module. Make a left R-module N as a left R[x]-module by xN = 0. We show inj $dim_R$ N = n implies inj $dim_{R[x]}$ N = n + 1 by using the induced inverse polynomial modules and their properties.

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.