INVERSE POLYNOMIAL MODULE

SANGWON PARK

ABSTRACT. Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. In this paper we generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^{S}]$ -module, where S is a submonoid of N (N is the set of all natural numbers).

1. Introduction

Northcott ([3]) considered the module $K[x^{-1}]$ of inverse polynomial over the polynomial ring K[x] (with K a field), and Northcott and McKerrow ([1]) proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. In this paper we generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^{S}]$ -module, where S is a submonoid of N (\mathbb{N} is the set of all natural numbers). Inverse polynomial modules were developed in [4] [5] and recently in [2].

DEFINITION 1.1. Let R be a ring and M be a left R-module. Then $M[x^{-1}]$ is a left R[x]-module such that

$$x(m_0 + m_1x^{-1} + \dots + m_nx^{-n}) = m_1 + m_2x^{-1} + \dots + m_nx^{-n+1}$$

and such that

$$r(m_0 + m_1 x^{-1} + \dots + m_n x^{-n}) = rm_0 + rm_1 x^{-1} + \dots + rm_n x^{-n}$$

Received September 25, 1998. Revised March 9, 2000.

2000 Mathematics Subject Classification: 16E30, 13C11, 16D80.

Key words and phrases: module, inverse polynomial, injective module.

This paper was supported by Dong-A University Research Fund, in 1998.

where $r \in R$.

Similarly, we also can define $M[[x^{-1}]]$, $M[x, x^{-1}]$, $M[x, x^{-1}]$, and also $M[[x, x^{-1}]]$ as left R[x]-modules where, for example, $M[[x, x^{-1}]]$ is the set of Laurent series in x with coefficients in M, i.e., the set of all formal sums $\sum_{k \geq n_0} m_k x^k$ with n_0 any element of Z (Z is the set of all integers).

DEFINITION 1.2. Let R be a ring and M be a left R-module, and $S = \{0, k_1, k_2, \cdots\}$ be a submonoid of N (N is the set of all natural numbers. Then $M[x^{-S}]$ is a left $R[x^S]$ -module such that

$$x^{k_i}(m_0 + m_1x^{-k_1} + m_2x^{-k_2} + \cdots + m_nx^{-k_n})$$

$$= m_1x^{-k_1+k_i} + m_2x^{-k_2+k_i} + \cdots + m_nx^{-k_n+k_i}$$

where
$$x^{-k_j+k_i} = x^{-k_j+k_i}$$
, if $-k_j+k_i \in S$
= 0, if $-k_j+k_i \notin S$.

For example, if $S = \{0, 2, 3, 4, 5, \dots\}$, then $m_0 + m_2 x^{-2} + m_3 x^{-3} + \dots + m_i x^{-i} \in M[x^{-S}]$ and if $S = \{0, 1, 2, 3, 4, \dots\}$, then $M[x^{-S}] = M[x^{-1}]$. Similarly, we can define $M[[x^{-S}]]$ as a left $R[x^S]$ -module.

LEMMA 1.3. Let M be a left R-module and $S = \{0, k_1, k_2, \dots\}$ be a submonoid of N (N is the set of all natural numbers). Then

$$\operatorname{Hom}_R(R[x^S],\ M)\cong M[[x^{-S}]]$$

as left $R[x^S]$ -modules.

PROOF. Define $\phi: \operatorname{Hom}_R(R[x^S], M) \to M[[x^{-S}]]$ by

$$\phi(f) = f(1) + f(x^{k_1})x^{-k_1} + f(x^{k_2})x^{-k_2} + \cdots$$

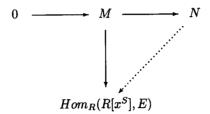
Then ϕ is an isomorphism.

THEOREM 1.4. If E is an injective left R-module, then $E[[x^{-S}]]$ is an injective left $R[x^S]$ -module.

PROOF. Let $0 \to M \to N$ be an exact sequence of left $R[x^S]$ -modules. Since,

$$\operatorname{Hom}_R(R[x^S], E) \cong E[[x^{-S}]],$$

equivalently we want to prove that the following diagram



can be completed to a commutative diagram. Note that

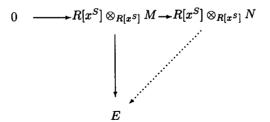
$$\operatorname{Hom}_{R[x^S]}(N,\operatorname{Hom}_R(R[x^S],E)) \cong \operatorname{Hom}_R(R[x^S] \otimes_{R[x^S]} N,E)$$

 $\operatorname{Hom}_{R[x^S]}(M,\operatorname{Hom}_R(R[x^S],E))\cong \operatorname{Hom}_R(R[x^S]\otimes_{R[x^S]}M,E).$

 $R[x^S]_{R[x^S]}$ is flat. So if $0 \to M \to N$ is exact, we have

$$0 \to R[x^S] \otimes_{R[x^S]} M \to R[x^S] \otimes_{R[x^S]} N$$

is exact. Since E is injective we can complete the following diagram:



 $\operatorname{Hom}_R(R[x^S] \otimes_{R[x^S]} N, E) \to \operatorname{Hom}_R(R[x^S] \otimes_{R[x^S]} M, E) \to 0$ is exact. $\operatorname{Hom}_{R[x^S]}(N, \operatorname{Hom}_R(R[x^S], E)) \to \operatorname{Hom}_{R[x^S]}(M, \operatorname{Hom}_R(R[x^S], E)) \to 0$ is exact. Hence, $\operatorname{Hom}_R(R[x^S], E)$ is an injective left $R[x^S]$ -module, i.e., $E[[x^{-S}]]$ is an injective left $R[x^S]$ -module.

2. Main Theorem

DEFINITION 2.1. Given any module M and $f \in End(M)$ we say f is locally nilpotent on M if for every $x \in M$, there exist $n \ge 1$ such that $f^n(x) = 0$.

The following Theorem 2.2 is originally due to Matlis and Gabriel.

THEOREM 2.2. If R is a left noetherian ring, and E is an injective left R-module, and $f \in End(E)$ is such that E is an essential extension of Ker(f), then f is locally nilpotent on E.

PROOF. Let K be the kernel of f and E be an essential extension of K. Consider the direct sum $K \oplus K \oplus \cdots$ of countable number of K's. Choose $(a_1, a_2, \cdots) \in E \oplus E \oplus \cdots$. Then $a_i = 0$ for all $i \geq n$ for some n. Since E is an essential extension of K, we choose $r_1 \in R$ such that $r_1a_1 \in K$. And choose $r_2 \in R$ such that $r_2(r_1a_2) \in K$ and so on. We choose $r_k \in R$ such that $r_k(r_{k-1} \cdots r_2 r_1 a_k) \in K$. Then

$$(r_n r_{n-1} \cdots r_2 r_1)(a_1, a_2, \cdots, a_n, 0, 0, \cdots) \in K \oplus K \oplus \cdots$$

Thus $E \oplus E \oplus \cdots$ is an essential extension of $K \oplus K \oplus \cdots$. Since R is left Noetherian, $E \oplus E \oplus \cdots$ is injective, so is an injective envelope of $K \oplus K \oplus \cdots$. If $M \subset E_1, M \subset E_2$ are injective envelopes of M and $\phi: E_1 \to E_2$ is the identity on M then ϕ is an isomorphism. So define a map

$$\phi: E \oplus E \oplus \cdots \longrightarrow E \oplus E \oplus \cdots$$

$$(x_1, x_2, \cdots) \longmapsto (x_1, x_2 - f(x_1), x_3 - f(x_2), \cdots).$$

Then ϕ is a homomorphism, and $\phi|_{K \oplus K \oplus \cdots} = id_{K \oplus K \oplus \cdots}$. So ϕ is an automorphism of $E \oplus E \oplus \cdots$ and in particular ϕ is onto. Let $x \in E$ and consider $(x,0,0,\cdots)$. Then $\phi(x_1,x_2,x_3,\cdots) = (x,0,0,\cdots)$ for some $(x_1,x_2,x_3,\cdots) \in E \oplus E \oplus \cdots$. Then

$$x_1 = x,$$

 $x_2 - f(x_1) = 0,$
 $x_3 - f(x_2) = 0,$

and so on. So $x_n = f^{n-1}(x)$ for all $n \ge 2$. But for some $n, x_{n+1} = 0$, i.e., $f^n(x) = 0$. Therefore, f is locally nilpotent.

We now have our main Theorem.

THEOREM 2.3. Let R be a commutative noetherian ring and S be a submonoid, and E be an injective left R-module. Then $E[x^{-S}]$ is an injective left $R[x^{S}]$ -module.

PROOF. Let $S = \{0, k_1, k_2, \dots\}$ be a submonoid. Then

$$\operatorname{Hom}_R(R[x^S], E) \cong E[[x^{-S}]]$$

is an injective left $R[x^S]$ -module. Define $\phi: E[[x^{-S}]] \to E[[x^{-S}]]$ by

$$\phi(f) = x^{k_1} f$$

for $f \in E[[x^{-S}]]$. Then ϕ is not locally nilpotent on $E[[x^{-S}]]$. So $E[[x^{-S}]]$ is not an essential extension of $Ker(\phi)$. Let \bar{E} be an injective envelope of $Ker(\phi)$. Then

$$Ker(\phi) \subset \bar{E} \subset E[[x^{-S}]].$$

Then $\phi: \bar{E} \to \bar{E}$ defined by

$$\phi(f) = x^{k_1} f,$$

for $f \in \bar{E}$ is locally nilpotent on \bar{E} . So $\bar{E} \subset E[x^{-S}]$. But $E[x^{-S}]$ is an essential extension of $Ker(\phi)$, so that $E[x^{-S}]$ is an essential extension of \bar{E} . Therefore, $\bar{E} = E[x^{-S}]$. Hence, $E[x^{-S}]$ is an injective left $R[x^{S}]$ -module.

References

- [1] A. S. McKerrow, On the Injective Dimension of Modules of Power Series, Quart J. Math. Oxford (3) 25 (1974), 359-368.
- [2] L. Melkersson, Content and Inverse Polynomials on Artinian Modules, Comm. Algebra 26 (1998), 1141-1145.
- [3] D. G. Northcott, Injective Envelopes and Inverse Polynomials, London Math. Soc. 3 (1974), no. 2, 290–296.
- [4] S. Park, Inverse Ploynomials and Injective Covers, Comm. Algebra 21 (1993), 4599-4613.
- [5] _____, The Macaulay-Northcott Functor, Arch. der Math. 63 (1994), 225-230.

Department of Mathematices

Dong-A University

Dong-A University

Pusan 604-714, Korea

E-mail: swpark@mail.donga.ac.kr