• Title/Summary/Keyword: N-fertilization

Search Result 814, Processing Time 0.029 seconds

Studies on the Mixture Combination in Permanent Pasture II. Effects of cutting management and nitrogen fertilization on the dry matter production (영년채초지에 있어서 혼파조합에 관한 연구 II. 예취빈도와 질소시비수준이 건물수량에 미치는 영향)

  • ;H. Jacob
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.3
    • /
    • pp.129-134
    • /
    • 1989
  • This experiment was conducted to evaluate the effect of cutting frequency and nitrogen fertilization on th change of vegetation and the yield of dry matter on the different mixture combination of permanent pasture. 1. DM yield was increased as the increasing Arrhenatherum elntius but was decreased as the increasing Tkisetum fkavescens. 2. DM yield was unaffectdd by the different mixture combination of permanent pasture eventually. 3. In case of cutting frequency, 2-cutting showed higher DM yield than that of 3-cutting, and N-fertilization level showed significant increase in DM yield as the increasing N-level, especially 2-cutting block of N-3 showed the highest yield and 3-cutting block of N-l showed the lowest yield. 4. Mixture combination, N-level and cutting frequency did not show significant changes in DM yield of permanent pasture eventually.

  • PDF

Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization

  • Kang, Hee Jung;Lee, Sun-Hee;Park, Yong-Seog;Lim, Chun Kyu;Ko, Duck Sung;Yang, Kwang Moon;Park, Dong-Wook
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Objective: Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. Methods: The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). Results: The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. Conclusion: We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure.

Effects of Nitrogen and Phosphorus Fertilization on Ectomycorrhiza Development, N-Fixation and Growth of Red Alder Seedlings (질소(窒素)와 인산(燐酸) 시비(施肥)가 루브라 오리나무(Alnus rubra Bong.) 묘목(苗木)의 외생균근발달(外生菌根發達)과 질소고정(窒素固定) 및 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randolph J.;Miller, Steven L.;Li, Ching Y.
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.96-106
    • /
    • 1996
  • Red alder(Alnus rubra Bong.) seedlings inoculated with Frankia only or both Frankia and spores of Alpova diplophloeus(Zeller & Dodge) Trappe & Smith were grown in a greenhouse for ten weeks. The ten-week-old seedlings were fertilized with six nitrogen(N) and phosphorus(P) fertility regimes (no fertilization, 10mM $NH_4NO_3$, 50mM $NH_4NO_3$, 5mM $KH_2PO_4$, 10mM $NH_4NO_3+5mM$ $KH_2PO_4$, and 50mM $NH_4NO_3+5mM$ $KH_2PO_4$) three times a week for ten weeks. The higher N-fertilization significantly increased mycorrhiza formation by greenhouse contaminant mycorrhizal fungi, but decreased N-fixation and P concentration in nodule tissues. P-fertilization significantly increased nodule and shoot dry weight, and P concentration in plant tissues. When N was highly fertilized, however, the P-fertilization effect disappeared in nodule P concentration but doubled in leaf P concentration. A. diplophloeus inoculation significantly increased diameter growth and $CO_2$ exchange rate, but decreased leaf dry weight. Our results suggest that the higher N- or P-fertilization affect nitrogenase activity and mycorrhizal development but the effects are changed by their interactions.

  • PDF

Effect of Nitrogen Levels and Harvest Intervals on Dry Matter Yield of Barnyard Millet

  • Lee, Bae Hun;Choi, Ki Choon;Yang, Seung Hak;Oh, Mirae;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.176-182
    • /
    • 2022
  • The aim of this study was to investigate dry matter productivity and nitrate nitrogen content in the growth stages of barnyard millet (Echinochloa esculenta) cultivated for feed, which was treated with different nitrogen fertilization levels. An early variety of barnyard millet (cv. Shirohie) was used for the test, and the different treatments with nitrogen fertilizer were as follows: 50% (N-40 kg/ha, T1), 100% (N-80 kg/ha, reference amount, T2), 150% (N-120 kg/ha, T3), 200% (N- 160 kg/ha, T4), 250% (N-200 kg/ha, T5), and 300% (N-240 kg/ha, T6). Sowing was done on May 13, 2021 and plants were harvested for four stage; vegetative stage, elongation stage, heading stage, and milk stage. The length of the millet increased significantly as the amount of nitrogen fertilization increased during the harvest period (p<0.05), but the difference was insignificant during the milk stage (p>0.05). Moreover, barnyard millet dry matter yield increased significantly as the levels of nitrogen fertilization increased (p<0.05), but there was no significant difference in dry matter yield among nitrogen fertilization levels during the heading stage (p>0.05). Chlorophyll also was significantly higher in T5 (250%) at all harvesting times, whereas nitrate nitrogen content was highest at the vegetative stage, gradually decreased as growth progressed, and lowest at the milk stage. Finally, as the nitrogen fertilization levels increased, the nitrate nitrogen content was significantly higher in all treatment groups (p<0.05). Therefore, our results suggest that the most appropriate nitrogen fertilizer levels is between 150%-200%, considering the dry matter yield, feed ingredients and nitrate nitrogen content in barnyard millet for feed.

Optimum Light Intensity and Fertilization Effects on Physiological Activities of Forsythia saxatil (산개나리의 생리적 활성에 대한 최적 광도 조건과 시비 효과)

  • Kim, Gil Nam;Han, Sim-Hee;Kim, Du Hyun;Yun, Chung-Weon;Shin, Soo Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.372-381
    • /
    • 2013
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated under different relative light intensities (RLI) and fertilization levels in order to find out the optimum environmental conditions for in-situ restoration. RLI and fertilization were four levels (30%, 43%, 63% of full sun and full sun) and three levels (non-fertilization, 2 times and 3 times of average forest soil in Korea), respectively. According to the increase of fertilization level under all RLI, leaf area increased and leaf dry weight and the ratio of leaf dry weight to leaf area decreased. As the fertilization level increased, photosynthetic pigment contents such as chlorophyll a, b and carotenoid under all RLI decreased. And pigment contents were the highest under full sun in the same fertilization level. Foliar nitrogen content under fertilization was higher than that under non-fertilization, and chlorophyll/nitrogen ratio decreased with the increase of fertilization level under all RLI. The increase of photosynthetic rate was observed with the increase of fertilization level at 63% of RLI and full sun, and dark respiration rate under fertilization was lower than under non-fertilization. Apparent quantum yield was lower at non-fertilization than that of fertilization, and it was highest at 63% of RLI under the same fertilization level. In conclusion, leaf growth and physiological characteristics of F. saxatilis could be improved under higher light conditions and fertilization.

Effect of Band Spotty Fertilization for Reduction of Nitrogen Fertilizer on Chinese Cabbage(Brassia campestris L.) in Plastic Film Mulching Cultivation (비닐피복 배추 재배시 국소시비에 의한 질소질비료의 절감 효과)

  • Yang, Chang-Hyu;Ryu, Chul-Hyun;Shin, Bok-Woo;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • This study was conducted to establish a low-input fertilization technique and increase of fertilization efficiency using the band spotty applicator(1999-2000) during the cultivation of mulching for chinese cabbage(Brassia campestris L.). The obtained results such as nitrogen efficiency, yield and soil improvement after cultivation of chinese cabbage were as follows. The content of $NO_3-N$ in soil increased in band spotty fertilization(BSF) by increasing application rate from the beginning stage to the middle stage. The content of total nitrogen increased but content of organic matter, available phosphate and exchangeable potassium decreased in comparison with the soil before experiment. Growth rate of Chinese cabbage increased in band spotty fertilization plot and uptake amount of nitrogen fertilized for chinese cabbage increased by increasing of the application rate. N use efficiency was higher by 5-21% in band spotty fertilization plot than in conventional fertilization(CF) plot. Yield of chinese cabbage increased by 16% in 70% band spotty fertilization plot and increased by 20% in 100% band spotty fertilization plot. It was found that 70% band spotty fertilization was more effective as fertilization method to reduce both environmental pollution and chemical nitrogen fertilizer in plastic film mulching cultivation.

Root Nodule Biomass of Robinia pseudoacacia and Amorpha fruticosa Seedlings with Fertilization Treatments

  • Noh, Nam-Jin;Son, Yo-Whan;Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Ban, Ji-Yeon;Kim, Jeong-Gyu
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 2006
  • Root nodule biomass, and seedling biomass and growth were examined for 2-year-old Robinia pseudoacacia and Amorpha fruticosa seedlings following fertilization treatments. Organic fertilizer, solid combination fertilizer, and organic fertilizer plus solid combination fertilizer were used for the study. Root nodule biomass (g/plant) ranged from 3.00 to 7.06 for R. pseudoacacia and varied from 1.52 to 2.32 for A. fruticosa, respectively. In all treatments, root nodule biomass of R. pseudoacacia was significantly higher than those of A. fruticosa. Fertilization significantly increased root nodule biomass for only R. pseudoacacia, however, there were no significant differences in root nodule biomass among fertilization treatments. Root nodule biomass was not influenced by soil nitrogen (N) and phosphorous (P) concentrations following fertilization treatments. Seedling biomass (components and total) and growth (diameter at root collar and height) were strongly correlated with root nodule biomass for the two N fixing tree species.

Improvement of Nitrogen Efficiency by N Application at Early Tillering Stage in Direct-Seeded Rice

  • Seo Jun-Han;Lee Ho-Jin;Lee Seung-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This study was conducted to establish the elaborate nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy. The nitrogen uptake by rice plants was insignificant until 25 days after seeding, and increased gradually thereafter. During this early growth stage, rice plants absorbed only the $4\%$ of basal applied N, while the $45\%$ of N fertilizer remained in the paddy soil. The absorption of basal N by rice plants was almost completed at 46 days after application. Nitrogen top-dressed at 5-leaf stage was well matched to crop nutrient demand, so it could be absorbed so actively in 8days after application. As a result, we could cut down the amount of N fertilizer to $36\%$ of the basal N level without significant difference in yield. Plant recoveries of fertilizer $^{15}N$ applied with different application timings were $7.8\%$ for basal, $9.4\%$ for 5-leaf stage, $17.1\%$ for tillering stage, and $23.4\%$ for panicle initiation stage, respectively. When urea was applied with nitrogen fertilization practice based on basal incorporation (BN), plant recovery of $^{15}N$ at harvest was $31.0\%$, which was originated from $13.7\%$ for grain, and $21.3\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. Plant recovery of fertilizer $^{15}N$ applied with nitrogen fertilization practice based on topdressing at 5-leaf stage (TN), where N rate was reduced by $18\%$ compared with BN, was $35.1\%$ (grain $15.6\%$), and $19.9\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. TN showed a higher $^{15}N$ recovery than BN because it was to apply N fertilizer at a time to well meet the demand of rice plant direct-seeded on flooded paddy. We concluded that TN would be the nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy.

Effect of Legume Cover Crops and Nitrogen Fertilization Rates on Yield and Nitrogen Use Efficiency of Waxy Corn (Zea mays L.) in No-Tillage System

  • Choi, Jong-Seo;Kim, Min-Tae;Ryu, Jin-Hee;Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • The adoption of legume cover crops in no-tillage system can contribute to improve soil fertility by providing several benefits, including reduction in soil erosion, suppression of weed growth and N supply to subsequent crops. We conducted a field study to investigate the effect of cover crops and nitrogen fertilization rates on yield and nitrogen use efficiency of waxy corn (Zea mays L.) in no-tillage upland field. Two legume cover crops, hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnuturn L.) were mechanically terminated with roller in early June. For each cover crop treatment, nitrogen (N) fertilizer was applied at three different rates (145, 72.5 and $0kg\;N\;ha^{-1}$). The growth and yield characteristics of corn were significantly affected by the N fertilization rates in crimson clover plots, which suggest N mineralization from the cover crop residue was not sufficient. In contrast, N fertilization rates had no significant effect on growth and yield of corn in hairy vetch plots, indicating that the amount of N released from the cover crop is large enough to meet most of the N requirement of corn. However, the application of N fertilizer in hairy vetch cover plots resulted in slight increase of crop yield, though not statically significant, and high levels of N concentration in corn plant tissue possibly due to luxury consumption of N. Organic residues on the soil surface in hairy vetch cover plots had substantial amounts of N after harvest, ranging from 100 to $116kg\;N\;ha^{-1}$, which is presumably retained during winter season and released by microbial mineralization in subsequent year. The highest nitrogen yield efficiency was achieved in the plot with hairy vetch cover and no N fertilizer application, followed by the plot with hairy vetch cover and $72.5kg\;N\;ha^{-1}$ fertilization rate. In conclusion, hairy vetch showed better performance in corn productivity as compared with crimson clover. In addition, it was concluded that the application of N fertilizer between 0 and $72.5kg\;N\;ha^{-1}$ in combination with hairy vetch cover crop might be most efficient for corn yield under no-tillage system with climatic and soil characteristics similar to those of the experimental site.

Growth and Tissue Nutrient Responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla Seedlings Fertilized with Nitrogen, Phosphorus, and Potassium at a Nursery Culture (묘포에서 질소, 인, 칼륨 비료주기가 물푸레나무, 들메나무, 잣나무, 전나무의 생장 및 양분에 미치는 영향)

  • Park, Byung-Bae;Byun, Jae-Kyung;Kim, Woo-Sung;Sung, Joo-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.85-95
    • /
    • 2010
  • The purpose of this study was to quantitatively measure both growth performances and nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings, which are commercially planted in Korea, to nitrogen, phosphorus, and potassium fertilization. We used Dickson's quality index (QI) to compare growth performances and vector diagnosis to interpret nutrient status. Nitrogen fertilization increased more height and root collar diameter growth in F. rhynchophylla and F. mandshurica relative to no fertilization treatment. The QI of F. rhynchophylla and F. mandshurica was the highest on N treatment, but there were no significant differences between treatments for P. koraiensis and A. holophylla. Nitrogen fertilization increased total dry weight by 43, 41, 26, -9% for F. rhynchophylla, F. mandshurica, P. koraiensis and A. holophylla, respectively. In F. rhynchophylla, N fertilization increased N contents with similar N concentrations ("sufficiency"), decreased both P concentrations and P contents ("antagonism"), and decreased K contents with similar K concentrations ("toxic accumulation"). In P. koraiensis, N fertilization decreased N, P, and K concentrations because of more dry weight increases compared to uptaken contents ("dilution"), but N fertilization decreased N, P, and K contents with similar N, P, and K concentrations ("toxic accumulation"). In the light of quality index and vector diagnosis, F. rhynchophylla and F. mandshurica seedlings treated with N fertilization would have high field performance.