• Title/Summary/Keyword: N deposition

Search Result 2,148, Processing Time 0.035 seconds

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

Determination of Ag(Ⅰ) Ion at a Modified Carbon Paste Electrode Containing N,N'-Diphenyl Oxamide

  • Won, Mi-Sook;Yeom, Jeong-Sik;Yoon, Jang-Hee;Jeong, Euh-Duck;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.948-952
    • /
    • 2003
  • New approach for the determination of Ag(I) ion was performed by using a carbon paste electrode (CPE) containing N,N'-Diphenyl oxamide (DPO) with anodic stripping voltammetry. The CMEs have been prepared by making carbon paste mixtures containing an appropriate amount of DPO salt coated onto graphite particles to analyze trace metal ions via complexation followed by stripping voltammetry. Various experimental parameters affecting the response, such as pH, deposition time, temperature, and electrode composition, were carefully optimized. Using differential pulse anodic stripping voltammetry, the logarithmic linear response range for the Ag(I) ion was 1.0 × $10^{-7}$ - 5.0 × $10^{-9}$ M at the deposition time of 10 min, with the detection limit was 7.0 × $10^{-10}$ M. The detection limit adopted from anodic stripping differential pulse voltammetry was 7.0 × $10^{-10}$ M for silver and the relative standard deviation was ± 3.2% at a 5.0 × $10^{-8}$ M of Ag(I) ion (n = 7). The proposed electrode shows a very good selectivity for Ag(I) in a standard solution containing several metals at optimized conditions.

Comparison between Superconducting Thin Films Fabricated by Using the Sputtering and the Evaporation Method (스퍼터링 법과 증발 법으로 제작한 초전도 박막의 비교)

  • Cheon, Min-Woo;Park, No-Bong;Yang, Sung-Ho;Park, Yong-Pil;Kim, Hye-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.39-42
    • /
    • 2004
  • The $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the sputtering method was compared with the $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the evaporation method. In doing the ultra-low deposition because each element can exist on the substrate surface, both the sputtering method and the evaporation method could easily fabricate single phase of the Bi2212 phase. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Characteristics of ZrN Films Deposited by Remote PEALD Method Using TDEAZ Precursor (원거리 플라즈마 ALD법으로 증착한 ZrN박막의 특성 연구)

  • Cho Seung Chan;Hwang Yoon Cheol;Lee Keun Woo;Han Se Jin;Kim In Bae;Jeon Hyeongtag;Kim Yangdo
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.594-597
    • /
    • 2005
  • The barrier characteristics of ZrN films deposited by remote plasma enhanced atomic layer deposition(PEALD) using TDEAZ and $N_2$ remote plasma have been investigated under various deposition conditions such as temperatures, plasma power and processing pressures. ZrN films showed generally improved properties as the processing temperature, pressure and plasma power increased. The optimized processing temperature, plasma power and pressure were $300^{\circ}C$, 200 Watt and 1 torr. respectively ZrN films deposited at the optimized processing conditions showed the carbon contents and resistivity of $6at.\%$ and $400{\mu}{\Omega}cm$ respectively.

Deposition Efficiency Modeling of TiN ICP-CVD system (TiN ICP-CVD장치의 증착 성능 모델링)

  • Son, Seok-Jae;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.88-89
    • /
    • 2008
  • TiN ICP-CVD 공정에서의 펄스 직류인가는 동일한 전력공급 하에 보다 효과적이고 우수한성능의 증착능을 나타낸다. 이에 따른 공적 최적화를 위해 전산모사 프로그램을 이용하여 전자의 에너지 분포 모사가 공정에 미치는 영향을 조사하였다.

  • PDF

Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징)

  • Kim, Je-Won;Son, Chang-Sik;Jang, Yeong-Geun;Choe, In-Hun;Park, Yeong-Gyun;Kim, Yong-Tae;Ambacher, O.;Ctutzmann, M.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.42-45
    • /
    • 1999
  • The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

  • PDF

Solid solubility of carbon in TiZrN coating by paste deposition methods for laser carburization (레이저 침탄에서 페이스트 증착방식에 따른 TiZrN 코팅의 carbon solid solubility)

  • Lee, Sungchul;Kim, Seonghoon;Kim, Jaeyoung;Kim, Bae-Yeon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • Carbon solubility on the paste deposition methods in the carbon-doped TiZrN coating was investigated in terms of lattice distortion and atomic concentration. After depositing the carbon paste by the dip coating, spin coating and screen printing, the laser was ablated to form the carbon gradient layer. Thickness and the concentration of doped carbon depended on the paste deposition method. Crystal structure analysis indicated that more lattice distortion occurred when coating layers were doped with spin coating and screen printing than when coating layers were doped with dip coating. The XPS depth profile showed that the thickness of carbon gradient layer by dip coating was about 30 nm, spin coating and screen printing are approximately 100 nm, formed more gradient layer. The hardness before laser carburization was about 30 GPa, and the hardness of 31 GPa with dip coating and 37 GPa with spin coating and screen printing. It was indicated that paste deposition methods for laser carburization contributed to lattice distortion and gradient layer.

Deposition Optimization and Bonding Strength of AuSn Solder Film (AuSn 솔더 박막의 스퍼터 증착 최적화와 접합강도에 관한 연구)

  • Kim, D.J.;Lee, T.Y.;Lee, H.K.;Kim, G.N.;Lee, J.W.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.49-57
    • /
    • 2007
  • Au-Sn solder alloy were deposited in multilayer and co-sputtered film by rf-magnetron sputter and the composition control and analysis were studied. For the alloy deposition condition, each components of Au or Sn were deposited separately. On the basis of pure Sn and Au deposition, the deposition condition for Au-Sn solder alloy were set up. As variables, the substrate temperature, the rf-power, and the thickness ratio were used for the optimum composition. For multilayer solder alloy, the roughness and the composition of solder alloy were controlled more accurately at the higher substrate temperature. In contrast, for co-sputtered solder, the substrate temperature influenced little to the composition, but the composition could be controlled easily by rf-power. In addition, the co-sputtered solder film mostly consisted of intermetallic compound, which formed during deposition. The compound were confirmed by XRD. Without flux during bonding of solder alloy film on leadframe, the adhesion strength were measured. The maximum shear stress was $330(N/mm^2)$ for multilayer solder with Au 10wt% and $460(N/mm^2)$ for co-sputtered solder with Au 5wt%.

  • PDF

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

Influence of PECVD SiNx Layer on Multicrystalline Silicon Solar Cell (PECVD SiNx 박막의 다결정 실리콘 태양전지에 미치는 영향)

  • Kim, Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.662-666
    • /
    • 2005
  • Silicon nitride $(SiN_x)$ film is a promising material for anti-reflection coating and passivation of multicrystalline silicon (me-Si) solar cells. In this work, a plasma-enhanced chemical vapor deposition (PECVD) system with batch-type reactor tube was used to prepare highly robust $SiN_x$ films for screen-printed mc-Si solar cells. The Gas flow ratio, $R=[SiH_4]/[NH_3]$, in a mixture of silane and ammonia was varied in the range of 0.0910.235 while maintaining the total flow rate of the process gases to 4,200 sccm. The refractive index of the $SiN_x$ film deposited with a gas flow ratio of 0.091 was measured to be 2.03 and increased to 2.37 as the gas flow ratio increased to 0.235. The highest efficiency of the cell was $14.99\%$ when the flow rate of $SiH_4$ was 350 sccm (R=0.091). Generally, we observed that the efficiency of the mc-Si solar cell decreased with increasing R. From the analysis of the reflectance and the quantum efficiency of the cell, the decrease in the efficiency was shown to originate mainly from an increase in the surface reflectance for a high flow rate of $SiH_4$ during the deposition of $SiN_x$ films.