• Title/Summary/Keyword: N$_2$-BET 비표면적

Search Result 49, Processing Time 0.021 seconds

The Preparation of Activated Carbon from Coffee Waste: ZnCl2-Activation (커피폐기물을 이용한 활성탄의 제조: ZnCl2-활성화)

  • You, S.H.;Kim, H.H.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1998
  • Activated coffee chars were prepared from coffee waste by chemical activation with zinc chloride. In this study, the following processes were carried out ; roasting step, carbonization step, chemical activation step, and washing and drying step. The roasting step of coffee waste was carried out at $300{\sim}400^{\circ}C$ for 10 minutes. The optimum condition of carbonization was at $650^{\circ}C$ for 1 hour. The most important parameter in chemical activation of coffee char was found to be the chemical ratio of activation agents. Activated coffee chars prepared by various activation methods were characterized in terms of the nitrogen BET surface area, the BJH pore volume and pore size distribution at 77 K. The $N_2$-BET surface areas and total pore volume of coffee chars prepared by the chemical activation with $ZnCl_2$ were determined as about $1110{\sim}1580m^2/g$ and $0.51{\sim}0.81cm^3/g$, respectively. Scanning Electron Microscopy (SEM) was used to observe the porosity and surface of activated coffee chars. From the results of SEM analysis, it was shown that active surface and many pores were formed after the chemical activation. The preparation of the activated coffee char from coffee waste was successfully carried out, which previews a possibility for exploitation of resources by recycling the waste.

  • PDF

Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers (KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동)

  • Yoo, Hye-Min;Min, Byung-Gak;Lee, Kyu-Hwan;Byun, Joon-Hyung;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.321-325
    • /
    • 2012
  • In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by $N_2$/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.

Acidic Properties of Mg-Al Mixed Oxides in the Dehydration of iso-Propanol (이소프로판올의 탈수반응에 있어서 Mg-Al 혼합 산화물의 산점 특성)

  • Youn, Hyunki;Ahn, Ji-Hye;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Mg-Al mixed oxides with molar ratio of Mg/Al = 1-3 were prepared by co-precipitation and characterized by using X-ray diffraction, scanning electron microscopy, BET surface area and pore volume measured by $N_2$ sorption analysis, and temperature programmed desorption of iso-propanol. As Al content in Mg-Al mixed oxide increased, the acidity and BET surface area proportionally increased. This increase of acidity directly influenced the catalytic activity of iso-propanol conversion and selectivity to propylene.

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride (염화아연에 의해 활성화된 폴리아크릴로나이트릴계 다공성 탄소나노섬유의 제조 및 특성)

  • Lee, Hye-Min;Bae, Kyong-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.370-374
    • /
    • 2013
  • The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.

Influence of Active Metal Dispersion over Pt/TiO2 Catalyst on NH3-SCO Reaction Activity (Pt/TiO2 촉매의 활성금속 분산도가 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Kwon, Dong Wook;Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • In this study, the effect of physical properties of $Pt/TiO_2$ on $NH_3$-selective catalytic oxidation (SCO) reaction at $200{\sim}350^{\circ}C$ was investigated. CO-chemisoption and BET analysis were carried out to verify physical properties of $Pt/TiO_2$. By characterizing physical properties of $Pt/TiO_2$ with respect to the Pt loading, the metal dispersion degree decreased as a function of the Pt loading amount. Also, the catalyst having a higher metal dispersion showed an excellent conversion efficiency of $NH_3$ to $N_2$. Since the specific surface area of the support affects the metal dispersion, $Pt/TiO_2$ catalysts were prepared using $TiO_2$ with different physical properties. As a result, it was confirmed that the catalyst having a wide specific surface area exhibited a excellent conversion of $NH_3$ to $N_2$.

$CO_2$Decomposition Properties of Ternary Ferrites Synthesized by the Wet Processing (습식 합성법으로 제조한 3원계 페라이트의 $CO_2$분해 특성 연구)

  • 안정률;배동식;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.962-967
    • /
    • 2000
  • 산소 결핍 페라이트 (oxygen deficient ferrites, ODF) MF $e_2$ $O_{4-}$$\delta$/는 약 30$0^{\circ}C$의 낮은 온도에서 온실가스중 하나인 $CO_2$를 C와 $O_2$로 분해시킨다. 본 연구에서는 $CO_2$분해 촉매로서 3원계 초미세 페라이트 N $i_{x}$Z $n_{1-x}$F $e_2$ $O_4$와 N $i_{x}$ $Co_{1-x}$F $e_2$ $O_4$를 수열합성법과 공침법 등의 습식 합성법으로 각각 합성하여 이들 분말의 특성과 $CO_2$분해 특성을 고찰하였다. 페라이트의 XRD 결과, 결정구조는 모두 전형적인 스피넬 구조로 동일하게 나타났다. BET 비표면적은 수열합성법으로 제조한 3원계 페라이트의 경우 110$m^2$/g 이상으로 공침법으로 제조한 페라이트보다 비교적 큰 값을 나타냈고 분말 입자크기 또한 약 10nm의 매우 미세한 분말을 얻을 수 있었다. 3원계 산소 결핍 페라이트의 $CO_2$분해 효율은 공침법으로 합성한 것보다 수열합성법으로 합성한 것이 더 우수하게 나타났으며, N $i_{x}$ $Co_{1-x}$F $e_2$ $O_{4-}$$\delta$/보다 N $i_{x}$Z $n_{1-x}$F $e_2$ $O_{4-}$$\delta$/가 우수한 것으로 나타났다.

  • PDF

Influence of Ozone Treatment on Cr(VI) Adsorption of Activated Carbon (오존처리가 활성탄소의 Cr(VI) 흡착특성에 미치는 영향)

  • Park, Soo-Jin;Kim, Byeong-Joo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, the Cr(VI) adsorption behaviors of activated carbons (ACs) treated by various ozone treatment conditions were studied. The surface properties of the ACs studied were determined by pH, acid-base, and FT-IR measurements. $N_2$ adsorption isotherm characteristics at 77K were confirmed by BET equation, Boer's t-plot method, and Horvath-Kawazoe's slit pore model. Also, the total Cr adsorption amount onto the ACs was measured by ICP-AES. As a result, the ozone treatment led to an increase of oxygen-containing polar functional groups and total acidity as well. Meanwhile, the specific surface areas or micropore volumes were slightly decreased after the ozone treatment due to the micropore filling or blocking. Nevertheless, the total Cr adsorption of ACs was increased with increasing of the ozone treatment time, attributed to the good interaction between Cr ions and polar functional groups on the ACs.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.