DOI QR코드

DOI QR Code

Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers

KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동

  • Yoo, Hye-Min (Department of Chemistry, Inha University) ;
  • Min, Byung-Gak (Polymer Science and Engineering, Korea National University of Transportation) ;
  • Lee, Kyu-Hwan (Materials Processing Division, Korea Institute of Materials Science) ;
  • Byun, Joon-Hyung (Composite Materials Group, Korea Insititue of Materials Science) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 유혜민 (인하대학교 화학과) ;
  • 민병각 (충주대학교 고분자공학과) ;
  • 이규환 (재료연구소 표면기술연구본부) ;
  • 변준형 (재료연구소 복합재료연구센터) ;
  • 박수진 (인하대학교 화학과)
  • Received : 2011.09.26
  • Accepted : 2011.11.23
  • Published : 2012.05.25

Abstract

In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by $N_2$/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.

본 연구에서는 화학적으로 활성 흑연나노섬유를 제조하여 그에 따른 전기화학적 거동을 확인하였다. 활성화제로 KOH를 사용하였으며, KOH와 흑연나노섬유의 비를 무게비로 각각 0, 1, 2, 4, 및 5로 처리하여 표면과 기공특성을 연구하였고, 그에 따른 전기화학적 거동을 살펴보았다. 활성화된 흑연나노섬유의 결정구조와 표면특성은 각각 X-선 회절분석법(XRD), 주사전자현미경(SEM) 분석방법을 이용하여 확인하였으며, 기공 특성은 비표면적 장치(BET)를 이용하였으며 질소흡착 등온선에 의해 조사하였다. 전기화학적 특성은 10 mV/s의 주사속도로 순환전류전압(cyclic voltammetry)을 통한 곡선으로 고찰하였으며 정전류법(galvanostatic method)으로 측정된 충방전 곡선을 통해 비축전용량을 계산하였다. 실험 결과로부터, 활성 흑연나노섬유의 전기화학적 거동은 KOH 양이 증가함에 따라 향상되었으며, 4 배 처리된 활성 흑연나노섬유가 최대의 비축전용량을 가진 것으로 나타났다. 이것은 KOH 활성화에 의해 활성 흑연나노섬유의 비표면적과 기공부피가 증가하기 때문인 것으로 사료된다.

Keywords

References

  1. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  2. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  3. B. E. Conway, in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/ Plenum, New York, 1999.
  4. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science, 313, 1760 (2006). https://doi.org/10.1126/science.1132195
  5. J. R. Miller and P. Simon, Science, 321, 651 (2008). https://doi.org/10.1126/science.1158736
  6. S. W. Yoon, D. H. Kim, B. S. Lee, B. S. Lee, G. Y. Moon, H. S. Byun, and J. W. Rhim, Polymer(Korea), 34, 45 (2010).
  7. S. J. Park, H. J. Jung, and C. H. Na, Polymer(Korea), 27, 46 (2003).
  8. E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, J. Power Sources, 168, 2 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
  9. A. Burke, J. Power Sources, 91, 37 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7
  10. E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  11. J. I. Kim and S. J. Park, J. Solid State Chem., 184, 2184 (2011). https://doi.org/10.1016/j.jssc.2011.05.038
  12. H. M. Yoo, G. Y. Heo, and S. J. Park, Carbon Lett., 12, 252 (2011). https://doi.org/10.5714/CL.2011.12.4.252
  13. J. Jiang, Q. Gao, K. Xia, and J. Hu, Micropor. Mesopor. Mater., 118, 28 (2009). https://doi.org/10.1016/j.micromeso.2008.08.011
  14. C. W. Huang, C. H. Hsu, P. L. Kuo, C. T. Hsieh, and H. Teng, Carbon, 49, 895 (2011). https://doi.org/10.1016/j.carbon.2010.10.053
  15. M. S. Balathanigaimani, W. G. Shim, M. J. Lee, C. Kim, J. W. Lee, and H. Moon, Electrochem. Commun., 10, 868 (2008). https://doi.org/10.1016/j.elecom.2008.04.003
  16. T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, and G. Q. Lu, J. Power Sources, 195, 912 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.048
  17. K. Jurevicz, R. Pietrzok, P. Nowichi, and H. Wachowska, Electrochim. Acta, 53, 5469 (2008). https://doi.org/10.1016/j.electacta.2008.02.093
  18. A. Burke, Electrochim. Acta, 53, 1083 (2008).
  19. B. J. Kim, Y. S. Lee, and S. J. Park, J. Colloid Interface Sci., 318, 530 (2008). https://doi.org/10.1016/j.jcis.2007.10.018
  20. S. J. Park, J. M. Park, and M. K. Seo, J. Colloid Interface Sci., 337, 300 (2009). https://doi.org/10.1016/j.jcis.2009.05.028
  21. L. Y. Meng and S. J. Park, J. Colloid Interface Sci., 352, 498 (2010). https://doi.org/10.1016/j.jcis.2010.08.048
  22. M. J. Jung, J. W. Kim, J. S. Im, S. J. Park, and Y. S. Lee, J. Ind. Eng. Chem., 15, 410 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  23. B. J. Kim and S. J. Park, Polymer(Korea), 35, 35 (2011).
  24. O. Kiyoshi, Y. Nobuo, K. Yoshikazu, and Y. Atsuo, J. Colloid Interface Sci., 262, 179 (2003). https://doi.org/10.1016/S0021-9797(03)00107-3
  25. T. Aida, I. Murayama, K. Yamada, and M. Morita, J. Power Sources, 166, 462 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.037
  26. J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama, and F. N. Ani, Carbon, 40, 2381 (2002). https://doi.org/10.1016/S0008-6223(02)00118-5
  27. B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, and Y. Yang, Mater. Chem. Phys., 124, 504 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.002
  28. S. Yorgun, N. Vural, and H. Demiral, Micropor. Mesopor. Mater., 122, 189 (2009). https://doi.org/10.1016/j.micromeso.2009.02.032
  29. K. Li, Z. Zheng, and Y. Li, J. Hazard. Mater., 181, 440 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.030
  30. B. J. Kim, M. K. Seo, K. E. Choi, and S. J. Park, J. Ind. Eng. Chem., 22, 167 (2011).
  31. H. M. Yoo, S. Y. Lee, B. J. Kim, and S. J. Park, Carbon Lett., 12, 112 (2011). https://doi.org/10.5714/CL.2011.12.2.112
  32. Y. H. Kim, I. J. Kim, B. G. Min, and S. J. Park, Res. Chem. Intermed., 36, 703 (2010). https://doi.org/10.1007/s11164-010-0172-z
  33. K. Xia, Q. Gao, J. Jiang, and J. Hu, Carbon, 46, 1718 (2008). https://doi.org/10.1016/j.carbon.2008.07.018

Cited by

  1. Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs vol.27, pp.None, 2012, https://doi.org/10.5714/cl.2018.27.112