• Title/Summary/Keyword: Music Similarity

Search Result 88, Processing Time 0.025 seconds

Music Identification Using Its Pattern

  • Islam, Mohammad Khairul;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.419-420
    • /
    • 2007
  • In this method, we extract peak periods using energy contents of each segment of music. This feature extraction method is equally applied on both the training and query music. Similarity matching algorithm is applied on the extracted feature values for identifying the query music from the database. The retrieval accuracy of 95% of our method is a pretty good result.

  • PDF

Performance Analysis of the Time-series Pattern Index File for Content-based Music Genre Retrieval (내용기반 음악장르 검색에서 시계열 패턴 인덱스 화일의 성능 분석)

  • Kim, Young-In;Kim, Seon-Jong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.18-27
    • /
    • 2006
  • Rapid increase of the amount of music data demands for a new method that allows efficient similarity retrieval of music genre using audio features in music databases. To build this similarity retrieval, an indexing techniques that support audio features as a time-series pattern and data mining technologies are needed. In this paper, we address the development of a system that retrieves similar genre music based on the indexing techniques. We first propose the structure of content-based music genre retrieval system based on the time-series pattern index file and data mining technologies. In addition, we implement the time-series pattern index file using audio features and present performance analysis of the time-series pattern index file for similar genre retrieval. The experiments are performed on real data to verify the performance of the proposed method.

  • PDF

Opera Clustering: K-means on librettos datasets

  • Jeong, Harim;Yoo, Joo Hun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

A Similarity Computation Algorithm for Music Retrieval System Based on Query By Humming (허밍 질의 기반 음악 검색 시스템의 유사도 계산 알고리즘)

  • Oh Dong-Yeol;Oh Hae-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.137-145
    • /
    • 2006
  • A user remembers a melody as not the combination of pitch and duration which is written in score but the contour which is composed of the relative pitch and duration. Because of the way of remembering a melody the previous Music Information Retrieval Systems which uses keyboard Playing or score as the main input melody are not easily acceptable in Query By Humming Systems. In this paper, we mention about the considerable checkpoints for Query By Humming System and previous researches. And we propose the feature extraction which is similar with the way of remembering a melody and similarity computation algorithms between melody in humming and melody in music. The proposed similarity computation algorithms solves the problem which can be happened when only uses the relative pitches by using relative durations.

  • PDF

Construction of Theme Melody Index by Transforming Melody to Time-series Data for Content-based Music Information Retrieval (내용기반 음악정보 검색을 위한 선율의 시계열 데이터 변환을 이용한 주제선율색인 구성)

  • Ha, Jin-Seok;Ku, Kyong-I;Park, Jae-Hyun;Kim, Yoo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.547-558
    • /
    • 2003
  • From the viewpoint of that music melody has the similar features to time-series data, music melody is transformed to a time-series data with normalization and corrections and the similarity between melodies is defined as the Euclidean distance between the transformed time-series data. Then, based the similarity between melodies of a music object, melodies are clustered and the representative of each cluster is extracted as one of theme melodies for the music. To construct the theme melody index, a theme melody is represented as a point of the multidimensional metric space of M-tree. For retrieval of user's query melody, the query melody is also transformed into a time-series data by the same way of indexing phase. To retrieve the similar melodies to the query melody given by user from the theme melody index the range query search algorithm is used. By the implementation of the prototype system using the proposed theme melody index we show the effectiveness of the proposed methods.

A Study of Popular Music Melody Idioms (대중음악 멜로디 관용구의 판단요소 -Someday 사건 대법원 판례를 중심으로-)

  • Kim, Min Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.291-300
    • /
    • 2020
  • Plagiarism concerns in the melody of popular music are on the rise. Despite these concerns, standards and methods for addressing these issues are lacking. This study is significant in the fact that it is the first case in the media which started as a controversy on plagiarism of popular music and even progressed to Supreme Court ruling. The first and second trial courts declared the existence of infringement of copyright by recognizing that the music in question was substantially alike as a result of comparing and reviewing the melody, rhythm, and harmony. However, the Supreme Court came to a different verdict on the infringement of musical work by reversing and remanding the case to the Seoul High Court. The Supreme Court indicated that even though the music presented in the first trial is a creative work entirely protected under the Copyright Act, expression without creativity is an area that is not protected under the law. Based on this case, this study seeks to compare and analyze the essential characteristics of melody in the judgment of infringement of copyrights in popular music, and factors related to the judgment of practical similarity and the judgment of idioms that are the criteria for judging infringement of musical work.

An analysis of Empirical Studies of Musical Literary Work Plagiarism Standard : The Popular Music (음악저작물 표절 기준에 관한 고찰 : 대중음악을 중심으로)

  • Jo, Jin-Wan;Shin, Mi-Hae;Park, Areum;Kim, Young-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.176-185
    • /
    • 2014
  • This study deals with the precedents regarding music works among 'The suits to claim an infringement of copyright' and 'Suits to claim indemnification for damage' that have been filed in Korea up so far in order to establish clear criteria to judge plagiarism based on the ground of legal judgment and judge the similarity of two works that have been in controversy previously. The study has been performed through literature review and also precedents. According to the study result, 'criteria to judge music works on plagiarism' are largely classified into (1) creativity, (2) access, and (3) substantial similarity. It is almost the same to judge creativity and substantial similarity. With the components of music works, say, melody, harmony, and rhythm, comparative analysis is conducted. About creativity, the original composer's song is analyzed with another object to be compared whereas about substantial similarity, two songs in controversy get to be analyzed. Regarding the current criteria to judge creativity, it is needed to set the number of objects to be compared which have been regarded similar. And access has limitations in setting up objective criteria for it. Lastly, we should develop digitized criteria for substantial similarity based on the preliminary review system of the Committee on Performance Ethics in the past.

Korean Traditional Music Melody Generator using Artificial Intelligence (인공지능을 이용한 국악 멜로디 생성기에 관한 연구)

  • Bae, Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.869-876
    • /
    • 2021
  • In the field of music, various AI composition methods using machine learning have recently been attempted. However, most of this research has been centered on Western music, and little research has been done on Korean traditional music. Therefore, in this paper, we will create a data set of Korean traditional music, create a melody using three algorithms based on the data set, and compare the results. Three models were selected based on the similarity between language and music, LSTM, Music Transformer and Self Attention. Using each of the three models, a melody generator was modeled and trained to generate melodies. As a result of user evaluation, the Self Attention method showed higher preference than the other methods. Data set is very important in AI composition. For this, a Korean traditional music data set was created, and AI composition was attempted with various algorithms, and this is expected to be helpful in future research on AI composition for Korean traditional music.

Music Therapy Counseling Recommendation Model Based on Collaborative Filtering (협업 필터링 기반의 음악 치료 상담 추천 모델)

  • Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.31-36
    • /
    • 2019
  • Music therapy, a field that convergence music and treatment, which play a fundamental role in personality formation, possesses diverse and complex treatment methods. Music therapists in charge of music therapy may experience the same phenomenon as countertransference in consultation with clients. In addition, experiencing psychological burnout, there are many difficulties in reaching the final goal of music therapy. In this paper, we provide a collaborative filtering-based music therapy consultation data recommendation model for smooth music therapy consultation with clients who visited for music therapy. The proposed model grasps the similarity between the conventional consultation data and the new consultant data through the euclidean distance algorithm. This is to recommend similar consultation materials. Since music therapists can provide optimal consultation materials for consultants who need music therapy, smooth consultation is expected.

A Study on Serendipity-Oriented Music Recommendation Based on Play Information (재생 정보 기반 우연성 지향적 음악 추천에 관한 연구)

  • Ha, Taehyun;Lee, Sangwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.128-136
    • /
    • 2015
  • With the recent interests with culture technologies, many studies for recommendation systems have been done. In this vein, various music recommendation systems have been developed. However, they have often focused on the technical aspects such as feature extraction and similarity comparison, and have not sufficiently addressed them in user-centered perspectives. For users' high satisfaction with recommended music items, it is necessary to study how the items are connected to the users' actual desires. For this, our study proposes a novel music recommendation method based on serendipity, which means the freshness users feel for their familiar items. The serendipity is measured through the comparison of users' past and recent listening tendencies. We utilize neural networks to apply these tendencies to the recommendation process and to extract the features of music items as MFCCs (Mel-frequency cepstral coefficients). In that the recommendation method is developed based on the characteristics of user behaviors, it is expected that user satisfaction for the recommended items can be actually increased.