• 제목/요약/키워드: Music Recommendation system

검색결과 85건 처리시간 0.03초

사용자의 취향을 고려한 음악 재생 목록 생성 시스템 (A Playlist Generation System based on Musical Preferences)

  • 방성우;김태연;정혜욱;이지형;김용세
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.337-342
    • /
    • 2010
  • 음악의 생산과 수요 증가와 함께 사용자의 장치에 저장되어 있는 음악을 관리하기 위한 관심 또한 증가하고 있다. 일반적으로 사용자는 음악을 효과적으로 관리하기 위해 재생 목록을 작성하고 이를 선택하는 방법을 사용하고 있다. 하지만 현재 사용되는 재생 목록의 작성 방법은 음악을 사용자가 직접 선택해야 하는 한계를 안고 있다. 따라서 재생 목록을 자동으로 작성하여 사용자에게 제공해주는 방법이 필요하다. 본 논문에서는 사용자의 음악사용의 상황과 취향을 고려하여 자동으로 재생 목록을 생성해주는 시스템을 제안한다. 이 시스템은 음악적 무드 (Musical mood) 분류 시스템과 음악 추천 시스템, 두 가지 별개의 시스템으로 구성되어 있다. 사용자는 음악을 추천 받기 위해 단지 하나의 음악을 선택한다. 그러면 시스템은 자동으로 재생 목록을 생성하기 위해 선택된 음악과 유사한 무드의 음악을 재생 목록에 추가한다. 사용자는 재생 목록에 추가된 음악 중 자신의 취향에 맞지 않는 음악을 제거하여 취향에 적합한 음악을 반복적으로 추천 받을 수 있다. 본 논문에서 제안하는 시스템의 실험과 평가를 위해 실제 음악을 수집하였으며 시스템을 통해 생성된 재생 목록을 분석하여 사용자의 취향이 보다 정확히 반영된 것을 확인하였다.

시간 가중치와 가변형 K-means 기법을 이용한 개인화된 음악 추천 시스템 (A Personalized Music Recommendation System with a Time-weighted Clustering)

  • 김재광;윤태복;김동문;이지형
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.504-510
    • /
    • 2009
  • 근래 들어 개인 적응형 서비스에 대한 관심이 높아지고 있으나 아직 음악에 관련된 서비스는 보편화되어 있지 않다. 그 이유는 음악의 관련 정보를 분석하는 것이 텍스트 기반의 자료에 비해 어렵기 때문이다. 이에 본 논문은 사용자가 선택했던 음악을 분석해서 사용자의 성향을 파악하고 그와 유사한 음악을 추천해주는 시스템을 제안한다. 음악의 속성을 추출하는 방법으로 음파 분석 기법을 사용한다. 음파에서 세 가지의 수치화된 속성을 추출하여 이를 특성 공간에 나타낸다. 이 때 사용자가 선택한 음악이 많이 모여 있는 군집을 분석한다면, 사용자의 취향을 파악할 수 있다. 하지만 몇 개의 군집이 형성될 것인지를 예측하기란 쉽지 않다. 이를 해결하기 위하여 군집의 수를 상황에 따라 유동적으로 변경할 수 있는 가변형 K-means 기법을 제시한다. 이 기법은 군집의 직경 크기를 제한하여, 일정치 이상일 때 군집의 수를 늘리는 방법으로 데이터의 범위를 알고 있을 때 매우 효율적으로 적용할 수 있다. 이 방법을 이용하여 군집의 중심을 찾고 이와 가까운 음악을 추천한다. 또한 사용자의 성향은 꾸준하게 변화하므로 본 논문은 사용자가 근래에 선택한 음악의 반영 비율을 높이고자 무게의 개념을 이용한 시간 가중치 기법을 적용하였다. 그리고 음악의 발매 시기도 고려하여 음악을 추천하는 시스템을 제안한다. 제안 방법의 검증을 위하여 100개의 음악 조각을 통한 실험적 검증을 하였으며 그 결과 제안 방법이 효과적인 것을 보인다.

소셜 미디어 분석을 통한 음악 추천 모델의 설계 및 구현 (Design and implementation of a music recommendation model through social media analytics)

  • 정경록;박구락;박상혁
    • 융합정보논문지
    • /
    • 제11권9호
    • /
    • pp.214-220
    • /
    • 2021
  • 스마트폰이 빠르게 보급되면서 음악을 생활 속의 배경음악처럼 항상 모든 곳에서 듣는 것이 일반화되어 개인의 상황과 조건에 맞는 추천을 할 수 있는 음악 데이터베이스를 필요하다. 본 논문에서는 소셜 미디어를 통한 음악추천 모델을 제안한다. 소셜 미디어의 데이터를 사용하여 음악 데이터베이스를 작성하고 기존의 음원 제공 플랫폼이 주로 사용하는 협업필터링과는 다른 방식으로 음악을 분류한다. 웹크롤링으로 음악 제목이 해시 태그로 달린 게시글을 찾아 해당 글에 함께 달린 다른 해시 태그들을 수집하고 분류하여 실제 청취자의 음악에 관한 의견을 데이터베이스에 사용한다. 소셜 미디어를 작성할 때의 감정, 상황, 시간대, 날씨 등 많은 조건이 해시 태그에는 포함되어 있으므로 다양한 사람의 의견이 집단지성으로 반영된 소셜 미디어 기반 데이터베이스를 구축할 수 있다.

모바일 환경에서 시간에 따른 가중치 부여를 이용한 개인화된 음악 추천 서비스 (Implementation of Personalized Music Recommendation System using Time-weighting in Mobile Environment)

  • 박원익;강상길
    • 정보화연구
    • /
    • 제10권2호
    • /
    • pp.251-261
    • /
    • 2013
  • 다양한 휴대 인터넷 환경의 출현은 기존 모바일 기기의 네트워크 접근을 보다 쉽게 해주고 있다. 또한 무선 환경을 사용하는 모바일 기기 사용자는 혼자 사용하는 특징을 가지고 있으며 유선 환경보다 사용자 프로파일 정보를 쉽게 구할 수 있다. 이러한 모바일 기기의 특징은 개인화 서비스를 적용하기에 최적의 시스템이다. 본 논문에서는 모바일 기기 사용자를 위한 개인화된 모바일 음악 콘텐츠 추천 서비스를 제공한다. 이 서비스는 사용자의 액세스 히스토리(access history) 정보를 활용하여 시간에 가중치 부여를 이용한 협업 필터링 방법을 제안한다. 액세스 히스토리 정보는 사용자의 관심정보를 알아낼 수 있다. 이 정보를 이용하여 음악 장르의 선호도를 고려하고 시간에 따라 가중치를 부여하여 음악을 추천해준다. 이 방법은 기존의 음악 추천 시스템의 문제점인 사용자가 선호하는 음악장르가 시간이 지남에 따라 변화한다는 사실을 고려하지 못하는 문제점을 해결한다.

대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구 (A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents)

  • 김용;문성빈
    • 정보관리학회지
    • /
    • 제24권2호
    • /
    • pp.89-104
    • /
    • 2007
  • 본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로운 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반 구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

단계적 협업필터링을 이용한 추천시스템의 성능 향상 (Performance Improvement of a Recommendation System using Stepwise Collaborative Filtering)

  • 이재식;박석두
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.218-225
    • /
    • 2007
  • Recommendation system is one way of implementing personalized service. The collaborative filtering is one of the major techniques that have been employed for recommendation systems. It has proven its effectiveness in the recommendation systems for such domain as motion picture or music. However, it has some limitations, i.e., sparsity and scalability. In this research, as one way of overcoming such limitations, we proposed the stepwise collaborative filtering method. To show the practicality of our proposed method, we designed and implemented a movie recommendation system which we shall call Step_CF, and its performance was evaluated using MovieLens data. The performance of Step_CF was better than that of Basic_CF that was implemented using the original collaborative filtering method.

  • PDF

음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기 (Multiple octave-band based genre classification algorithm for music recommendation)

  • 임신철;장세진;이석필;김무영
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1487-1494
    • /
    • 2011
  • 본 논문은 음악 추천을 위한 새로운 장르 분류 알고리즘을 제안하였다. 특히, 장르 분류 알고리즘에 사용되는 특정 벡터 중 octave-based spectral contrast (OSC)의 성능 개선을 위해서 심리청각 모델과 악기별 사용 octave 범위에 근거하여 새로운 band-pass filter를 설계하였다. 10개 장르별 음악을 포함하고 있는 GTZAN database에 대해서 10-fold cross validation 실험 결과, 다중 옥타브 밴드 OSC에 대해서 기존 OSC에 비해 2.26% 향상된 인식율을 얻을 수 있었다. 또한, 기존의 mel-frequency cepstral coefficient (MFCC)와 복합 특징 벡터를 구성하여 실험한 결과, 향상된 인식율을 얻을 수 있었다.

퍼베이시브 컴퓨팅 환경에서 소셜네트워크를 이용한 프로액티브 친구 추천 기법 (Proactive Friend Recommendation Method using Social Network in Pervasive Computing Environment)

  • 권준희
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.43-52
    • /
    • 2013
  • Pervasive computing and social network are good resources in recommendation method. Collaborative filtering is one of the most popular recommendation methods, but it has some limitations such as rating sparsity. Moreover, it does not consider social network in pervasive computing environment. We propose an effective proactive friend recommendation method using social network and contexts in pervasive computing environment. In collaborative filtering method, users need to rate sufficient number of items. However, many users don't rate items sufficiently, because the rating information must be manually input into system. We solve the rating sparsity problem in the collaboration filtering method by using contexts. Our method considers both a static and a dynamic friendship using contexts and social network. It makes more effective recommendation. This paper describes a new friend recommendation method and then presents a music friend scenario. Our work will help e-commerce recommendation system using collaborative filtering and friend recommendation applications in social network services.

An Auto Playlist Generation System with One Seed Song

  • Bang, Sung-Woo;Jung, Hye-Wuk;Kim, Jae-Kwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2010
  • The rise of music resources has led to a parallel rise in the need to manage thousands of songs on user devices. So users have a tendency to build playlist for manage songs. However the manual selection of songs for creating playlist is a troublesome work. This paper proposes an auto playlist generation system considering user context of use and preferences. This system has two separated systems; 1) the mood and emotion classification system and 2) the music recommendation system. Firstly, users need to choose just one seed song for reflecting their context of use. Then system recommends candidate song list before the current song ends in order to fill up user playlist. User also can remove unsatisfied songs from the recommended song list to adapt the user preference model on the system for the next song list. The generated playlists show well defined mood and emotion of music and provide songs that the preference of the current user is reflected.

데이터 마이닝 기법을 이용한 사용자 상황 추론 (User's Context Reasoning using Data Mining Techniques)

  • 이재식;이진천
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.122-129
    • /
    • 2006
  • The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.

  • PDF