Proactive Friend Recommendation Method using Social Network in Pervasive Computing Environment

퍼베이시브 컴퓨팅 환경에서 소셜네트워크를 이용한 프로액티브 친구 추천 기법

  • 권준희 (경기대학교 컴퓨터과학과)
  • Published : 2013.03.30

Abstract

Pervasive computing and social network are good resources in recommendation method. Collaborative filtering is one of the most popular recommendation methods, but it has some limitations such as rating sparsity. Moreover, it does not consider social network in pervasive computing environment. We propose an effective proactive friend recommendation method using social network and contexts in pervasive computing environment. In collaborative filtering method, users need to rate sufficient number of items. However, many users don't rate items sufficiently, because the rating information must be manually input into system. We solve the rating sparsity problem in the collaboration filtering method by using contexts. Our method considers both a static and a dynamic friendship using contexts and social network. It makes more effective recommendation. This paper describes a new friend recommendation method and then presents a music friend scenario. Our work will help e-commerce recommendation system using collaborative filtering and friend recommendation applications in social network services.

Keywords

References

  1. Debashis Saha and Amitava Mukherjee, "Pervasive Computing: A Paradigm for the 21st Century," Computer, Vol. 36, No. 3, 2003, pp. 25-31.
  2. Matthias Baldauf, Schahram Dustdar and Florian Rosenberg, "A survey on context-aware systems," International Journal Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, 2007, pp. 263-277. https://doi.org/10.1504/IJAHUC.2007.014070
  3. David Tennenhouse, "Proactive computing," communications of the ACM, Vol. 43, No. 5, 2000, pp. 43-50.
  4. Danah M. Boy and Nicole B. Ellison, "Social network sites: Definition, history, and scholarship," Journal of Computer-Mediated Communication, Vol. 13, No. 1, 2008, pp. 210-230.
  5. Wolfgang Woerndl and Georg Groh, "Utilizing Physical and Social Context to Improve Recommender Systems," Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, 2007, pp. 123-128.
  6. 이홍주, 김종우, 박성주, "협업 필터링 기반 상품 추천에서의 평가 횟수와 성능," 한국경영과학회지, 제31권, 제2호, 2006, pp. 27-39.
  7. 이해성, 권준희, "상황 정보와 폭소노미를 이용한 협업 필터링 모바일 콘텐츠 추천 어플리케이션," 한국정보기술학회논문지, 제7권, 제2호, 2009, pp. 132-140.
  8. 김성림, 권준희, "상황인식 정보 검색 기법을 이용한 하이브리드 협업 필터링 기법," 디지털산업정보학회논문지, 제6권, 제1호, 2010, pp. 143-149.
  9. 이형동, 김형주, "협업 필터링 추천시스템에서의 취향 공간을 이용한 평가 예측 기법," 정보과학회논문지 : 데이터베이스, 제34권, 제5호, 2007, pp. 389-395.
  10. 김성림, 권준희, "Recommendation Method for Social Service in Ubiquitous Environment," 디지털산업정보학회논문지, 제7권, 제2호, 2011, pp. 19-27.
  11. 설광수, 김정동, 심형남, 백두권, "소셜 네트워크 서비스 사용자 간의 친밀도 측정 기법 및 실험," 정보과학회논문지 : 정보통신, 제39권, 제4호, 2012, pp. 335-341.
  12. Angel Garcia-Crespo, Javier Chamizo, Ismael Rivera, Myriam Mencke, Ricardo Colomo- Palacios, Juan Miguel Gomez-Berbis, "SPETA: Social pervasive e-Tourism advisor," Telematics and Informatics, Vol. 26, Issue 3, 2009, pp. 306-315. https://doi.org/10.1016/j.tele.2008.11.008
  13. Claudio Biancalana, Roma Tre, Fabio Gasparetti, Alessandro Micarelli, Giuseppe, "An Approach to Social Recommendation for Context-Aware Mobile Services," ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 4, Issue 1, 2013.
  14. Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Thomas Neumann, Josiane Xavier Parreira, Marc Spaniol, and Gerhard Weikum, "Social Wisdom for Search and Recommendation," IEEE Data Engineering. Bulletin, Vol. 31, No. 2, 2008, pp. 40-49.