• Title/Summary/Keyword: Muscular activation

Search Result 79, Processing Time 0.026 seconds

Effects of plyometric exercise and weight training on athletic performances (플라이오메트릭과 웨이트 트레이닝이 운동 수행 능력에 미치는 영향)

  • Ahn, In-Tae;Choi, Bo-ram
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.47-54
    • /
    • 2022
  • Background: Plyometric exercise is an exercise exerting forceful power in a brief period using isotonic activation. It is effective to improve reaction of muscle, agility, endurance and athletics performance. Weight training is an exericse improving muscular strength, endurance and respirating ability applying diversely in frequency and load of exercise Plyometric exercise and Weight training is to facilitate the athletics performance though improving the function of lower limb muscle, there is a difference that Plyometic jump squats is the way to improve agility and Weight training is the way to improve muscular strength. Therefore, it is necessary to know how this difference effects on athletics performance as measuring ankle, ROM, and jumping ability. Design: Randomized controlled trial. Method: This study was conducted with the voluntary participation of 40 university students, who were randomly assigned to jump squat and calf raise groups (n=20 per group). For each subject, we measured the range of motion of the ankle joint before and after exercise, as well as a standing broad jump and vertical jump test performance. We compared the performance indices before and after exercises using paired t-tests, and between groups using independent-samples t-tests. Conclusions: Both jump squat and calf raise exercises improved ankle joint dorsiflexion and plantar flexion, as well as standing broad jump and vertical jump height performance. However, there were no significant differences before versus after exercise, or between exercise types. Although jump squats and calf raises have different purposes, it is thought that, in combination, these exercises improve performance more effectively than either alone, and that such a combined exercise program improves the quality of training in both the general public and athletes in various sports.

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

The Effects of Sensorimotor Training on Balance and Muscle Activation During Gait in Older Adults (감각운동훈련이 노인의 균형 및 보행에 미치는 영향)

  • Jeong, Tae-Gyeong;Park, Jeong-Seo;Choi, Jong-Duk;Lee, Ji-Yeun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the effect of 6-week sensorimotoor training on balance ability and lower limb muscle activation during gait in older adults. Methods: Twenty-four community-dwelling older adults between 65 and 90 years of age participated in this study. In the older adults of the experimental group (n=12), the sensorimotor training program was performed bare feet. General exercise was performed in the control group (n=12). Then, both groups exercised three times a week for forty minutes over a 6-week period. Balance ability was evaluated by One leg stand (OLS) test for determining the static balance and Timed Up & Go (TUG) test for determining the dynamic balance. In addition, muscle activation of the dominant lower limb tibialis anterior and gastrocnemius medialis muscles were measured by surface EMG to evaluate muscle activation during gait. Results: A significant improvement was seen in the one leg standing (OLS) time after exercise in both the sensorimotor training (SMT) group and general exercise (GE) group (p<0.05) and the change in the SMT group was greater than that in the GE group (p<0.05). A significant reduction was seen in the Timed Up & Go (TUG) test time after exercise in both the SMT group and GE group (p<0.05). Also, a significant increase was seen in muscle activation of tibialis anterior muscle after exercise in the SMT group (p<0.05), but no such significant increase was seen in the GE group (p>0.05). Conclusion: These results suggest that sensorimotor training improves the balance in older adults and has a more positive effect on muscular strength and gait. Sensorimotor training provided a variance of training environment and COG exercise of the body is thought to be a more effective exercise program that improves balance and gait ability in older adults.

Effect of Swiss Ball Exercise on the Muscular Activity of Hamstring during Different Feet Position (양발의 위치에 따른 스위스 볼 운동이 뒤넙다리근 근활성도에 미치는 영향)

  • Jang, Yujin;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.214-219
    • /
    • 2021
  • Objective: The aim of this study was to evaluate the differences in muscle activity of hamstring muscle depending on the position of the feet during Swiss ball hamstring curl exercise. Method: Total of 15 male participants with no history of hamstring muscle injuries and musculoskeletal disorders in the past 6 months were participated in this study (Age: 29.27 ± 4.96 yrs, Height: 173.47 ± 5.18 cm, Body mass: 75.47 ± 12.50 kg). The muscle activation of semitendinosus and biceps femoris with four different feet positions including neutral stance, internal rotation, external rotation, and wide stance were measured during a Swiss ball hamstring curl exercise. For the analysis, the Swiss ball exercise movement comprised of 3 events (90°→ 0°→ 90°) based on the knee angle and 2 phases relative to the mechanism of muscle contraction (eccentric/concentric contraction). To pursue the study goal, an one-way ANOVA with repeated measures was performed with statistical significance as α = 0.05. Results: There was no statistically significant feet position effect found during the Swiss ball hamstring curl with eccentric contraction phase (p>.05). It is, however, semitendinosus showed an enhanced muscle activation in concentric contraction phase, displaying the highest muscle activity in wide stance and the lowest in external rotation (p<.05). Conclusion: Our findings suggest that this exercise can be beneficial in selectively training the semitendinosus. In other words, Swiss ball hamstring curls performed in wide stance strengthens semitendinosus, which improves the stability of knee and are effective in preventing knee injuries and reinforces rehabilitation.

Arterial Pressor Response Elicited by Activation of Muscle Afferent Fibers in the Cat (고양이에서 근육감각신경 활성화로 유발된 승압반사)

  • Kim, Jun;Seo, Sang-A;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.231-243
    • /
    • 1988
  • This study was performed to investigate the mechanism of changes in arterial blood pressure, as a typical example of somatosympathetic reflex, induced by activation of muscular afferent nerves. Cats were anesthetized with ${\alpha}-chloraloae$ (60 mg/kg, i.p.). Afferent fibers in muscle nerve were activated by various method muscle contraction, electrical stimulation of muscle nerves, intraarterial injection of some algesic substances and noxious mechanical stimulation etc-and the evoked changes in arterial blood pressure were monitored. The effects of intravenous or direct spinal administration of morphine on the changes in arterial blood pressure induced by activation of the muscle afferent fibers were observed and also the effects of spinal lesions made in the $L1{\sim}L3$ spinal cord on them were studied to identify the ascending spinal pathways of the somatosympathetic reflexes. Followings are the results obtained. 1) The stimulation of medial gastrocnemius nerve under non-paralyzed condition with C-strength, low frequency (lower than 20 Hz) stimuli elicited a depressor response and a pressor response was elicited with C-strength, high frequency stimuli, of which the maximal response was observed at 100 Hz stimulation. 2) When the animal was paralyzed, depressor response to stimulation of the medial gastrocnemius nerve was observed with C-strength, $0.5{\sim}5Hz$ stimuli although the amplitude of the depressor response was decreased. The maximal pressor response was observed during stimulation with C-strength, $20{\sim}100Hz$ stimuli. 3) Intraarterial injection of some algesic substances induced marked pressor responses while noxious mechanical stimulation of the medial gastrocnemius muscle was not enough to elicit any significant changes (larger than 10 mmHg) in arterial blood pressure. 4) Systemically administered morphine (2 mg/kg) lowered the arterial blood pressure immediately and persistently and it was reversed by administration of naloxone. Direct spinally administered morphine did not elicit any changes. 5) The pressor response elicited by the activation of muscle afferent nerves was strengthened by systemic morphine administration while the depressor response tended to decrease. 6) Morphine administered on the spinal cord directly, decreased pressor response but did not change depressor response. From the above results it is concluded that there are separate groups of afferent nerves in the medial gastrocnemius nerve, which elicit pressor and depressor responses and the spinal ascending pathways of them are also separated from each other.

  • PDF

Comparative Study of Biomechanical Left and Right Elbow Joint Extension Movements After Wheel Axle Application (윤축을 적용한 좌·우 주관절 신전 동작의 운동역학적 비교 연구)

  • Kim, Sung-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • In this study, we have experimented with 9 players at the national delegate level. Although there were some differences in the average effects of 3 types of one-two straight movements after the application of wheel axle, there were no statistical differences in the case of surface reacting forces, electromyograms, and impact forces. When the right fist was impacted using the one-two straight movements and the wheel axle was applied with 3 segmentations, high impact forces were obtained for the pronation in the following order-72.01 $m/s^2$ (type 2), 70.93 $m/s^2$ (type 3), and 58.19 $m/s^2$ (type 1). Higher values of the surface reacting force were found for type 1 that did not exhibit pronation in the left foot, whereas in the case of the vertical direction of the right foot, type 2 with pronation exhibited higher values and impact forces. In the right electromyogram, high impact forces due to the activation of the muscular electric potential were obtained for lumbar erector (LE) spinae and triceps brachii (TB) with type 1; LE spina, latissimus dosi (LD), and upper trapezius (UT) with type 2; and brachioradialis (BR), UT, and rectus abdominal (RA) with type 3. Due to pronation and complex motions of the 3 pronation segmentations, the efficiency was higher for impacts due to one-two straight movements.

EMS based Force Feedback Methodology through Major Muscle Group Activation (대표근육 자극을 통한 EMS 기반 역감 제어방법론 제안)

  • Kim, Hyo-Min;Kwon, Jae-Sung;Oh, Yong-Hwan;Yang, Woo-Sung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • The electrical muscle stimulator (EMS) based human machine interface (HMI) free to mechanical constraint and muscle fatigue problems are proposed for force feedback in a virtual reality. The device was designed to provide force feedback up to 4.8 N and 2.6 N each to the thumb and forefingers. The main objective of the HMI is to make unnecessary mechanical structures to attach on the hand or fingers. It employs custom EMSs and an interface arranged in the forearm. In this work, major muscle groups such as extensor pollicis brevis (EPB), extensor indicis proprius (EIP), flexor pollicis longus (FPL) and flexor digitorum profundus (FDP) are selected for efficient force feedback and controlled individually. For this, a human muscular-skeletal analysis was performed and verified. The validity of the proposed multi-channel EMS based HMI was evaluated thorough various experiments with ten human subjects, interacting with a virtual environment.

A Study on the Functional Electrical Stimulation (기능적 전기 자극에 대한 고찰)

  • Lim, Jong-Soo;Kim, Soon-Hee;Song, Young-Wha
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.187-199
    • /
    • 1999
  • Functional Electrical Stimulation (FES) is used for muscle reeducation, reduction of spasticity, delay of atrophy, and muscle strengthening. FES stronger stimulation than other forms of electrical stimulation. The efficacy of FES in improving function has been substantiated in the literature. Treatment programs employing FES - activation of muscular tissue through the intact peripheral nervous system - can be broken into five major categories, according to the goal of treatment. These broad areas would include the use of FES to: (1) a direct excitation onto the alpha motoneuron, through peripheral stimulation of the Ia myotatic sensory system and ascending afferent information, which will be integrated at conscious and subconscious level of the CNS. (2) The quality of a stimulated muscle contraction is determined by combination of many parameters, including stimulus amplitude, pulse duration, stimulus frequency, and duty cycle. (3) A unit that has a pulse duration between 200 and $400{\mu}sec$ will be more than adequate for FES applications. (4) The neuromuscular plasticity is critically important to return of function using muscle re-education and facilitation applications. (5) Prior to using FES as an electrical orthosis, the patient should build up endurance in the muscles to be stimu1ated during the gait cycle.

  • PDF

Meeting the meat: delineating the molecular machinery of muscle development

  • Jan, Arif Tasleem;Lee, Eun Ju;Ahmad, Sarafraz;Choi, Inho
    • Journal of Animal Science and Technology
    • /
    • v.58 no.5
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.