DOI QR코드

DOI QR Code

Meeting the meat: delineating the molecular machinery of muscle development

  • Received : 2016.02.15
  • Accepted : 2016.04.07
  • Published : 2016.05.31

Abstract

Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.

Keywords

References

  1. Bettencourt EMV, Tilman M, Narciso V, Carvalho MLS, Henriques PDS. The livestock roles in the wellbeing of rural communities of Timor-Leste. Rev de Eco Soc Rural. 2015;53(S1):63-80. https://doi.org/10.1590/1234-56781806-94790053s01005
  2. Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH, Choi BH, Chun TH, Kang SW, Lee YS, Kim JW, Schnabel RD, Taylor JF, Choi I. Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocyte. Genomics. 2012a;100:195-202. https://doi.org/10.1016/j.ygeno.2012.06.005
  3. Lee EJ, Bajracharya P, Lee DM, Kang SW, Lee YS, Lee HJ, Hong SK, Chang JS, Kim JW, Schnabel RD, Tayler JF, Choi I. Gene expression profiles during differentiation and transdifferentiation of bovine myogenic satellite cells. Genes Genom. 2012b;34:133-48. https://doi.org/10.1007/s13258-011-0096-z
  4. Lee EJ, Bajracharya P, Jang EJ, Lee HJ, Jang JS, Hong SG, Choi I. Effect of sex steroid hormones on bovine myogenic satellite cell proliferation, differentiation and lipid accumulation in myotube. Asian-Austra J Ani Sci. 2010;23:649-58. https://doi.org/10.5713/ajas.2010.90227
  5. Lee SJ, Lee EJ, Kim SH, Choi I, Lee DM, Lee HJ, Yoon DH, Chun TH. IL-17A promotes transdifferentiation of myoblasts into adipocytes by increasing expression of PPAR${\gamma}$ through C/EBP${\beta}$. Biotech Lett. 2011;33:229-35. https://doi.org/10.1007/s10529-010-0440-4
  6. Kim JH, Kim M, Nahm SS, Lee DM, Pokharel S, Choi I. Characterization of Gender-Specific Bovine Serum. Anim Cell Sys. 2011;15:147-54. https://doi.org/10.1080/19768354.2011.577584
  7. Park JH, Park JH, Nahm SS, Choi I, Kim JH. Identification of anti-adipogenic proteins in adult bovine serum suppressing the differentiation of 3T3-L1 preadipocytes. BMB Rep. 2013;46:582-7. https://doi.org/10.5483/BMBRep.2013.46.12.082
  8. Lee EJ, Kamli MR, Pokharel S, Malik A, Tareq KMA, Bhat AR, Park HB, Lee YS, Kim SH, Yang BS, Jeong KY, Choi I. Expressed sequence tags for bovine muscle satellite cells, myotube-formed cells and adipocyte-like cells. PLoS ONE. 2013a;8(11):e79780. https://doi.org/10.1371/journal.pone.0079780
  9. Lee EJ, Bhat AR, Kamli MR, Pokharel S, Chun T, Lee YH, Nahm SS, Nam JH, Hong SK, Yanh B, Chung KY, Kim SH, Choi I. Transthyretin is a key regulator of myoblast differentiation. PLoS ONE. 2013b;8(5):e63627. https://doi.org/10.1371/journal.pone.0063627
  10. Pokharel S, Kamli MR, Mir BA, Malik A, Lee EJ, Choi I. Expression of transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cel Dev Biol-Anim. 2014;50:756-65. https://doi.org/10.1007/s11626-014-9757-y
  11. Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim JH, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS ONE. 2014a;9:e92447. https://doi.org/10.1371/journal.pone.0092447
  12. Malik A, Lee EJ, Jan AT, Ahmad S, Cho KH, Kim J, Choi I. Network analysis for the identification of differentially expressed hub genes using myogenin knock-down muscle satellite cells. PLoS ONE. 2015;10(7):e0133597. https://doi.org/10.1371/journal.pone.0133597
  13. Yin H, Price F, Rudnicki MA. Satellite Cells and the Muscle Stem Cell Niche. Physiol Rev. 2013;93(1):23-67. https://doi.org/10.1152/physrev.00043.2011
  14. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166:347-57. https://doi.org/10.1083/jcb.200312007
  15. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol. 2007;304:246-59. https://doi.org/10.1016/j.ydbio.2006.12.026
  16. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z. The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol. 2010;340:330-43. https://doi.org/10.1016/j.ydbio.2010.01.006
  17. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn. 2004;231:489-502. https://doi.org/10.1002/dvdy.20151
  18. Allouh MZ, Yablonka-Reuveni Z, Rosser BW. Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histo Cytochem. 2008;56:77-87. https://doi.org/10.1369/jhc.7A7301.2007
  19. Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS ONE. 2010;5:e13307. https://doi.org/10.1371/journal.pone.0013307
  20. Lindstrom M, Thornell LE. New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol. 2009;132:141-57. https://doi.org/10.1007/s00418-009-0606-0
  21. Lindstrom M, Pedrosa-Domellof F, Thornell LE. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol. 2010;134:371-85. https://doi.org/10.1007/s00418-010-0743-5
  22. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham M, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151:1221-34. https://doi.org/10.1083/jcb.151.6.1221
  23. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309:2064-7. https://doi.org/10.1126/science.1114758
  24. Capers CR. Multinucleation of skeletal muscle in vitro. J Biophy Biochem Cytol. 1960;7:559-67. https://doi.org/10.1083/jcb.7.3.559
  25. Cooper WG, Konigsberg IR. Dynamics of myogenesis in vitro. Anat Rec. 1961;140:195-205. https://doi.org/10.1002/ar.1091400305
  26. Konigsberg UR, Lipton BH, Konigsberg IR. The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol. 1975;45:260-75. https://doi.org/10.1016/0012-1606(75)90065-2
  27. Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat Rec. 1975;182:215-35. https://doi.org/10.1002/ar.1091820207
  28. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534-51. https://doi.org/10.1152/jappl.2001.91.2.534
  29. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122:289-301. https://doi.org/10.1016/j.cell.2005.05.010
  30. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008;456:502-6. https://doi.org/10.1038/nature07384
  31. Zammit P, Beauchamp J. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation. 2001;68:193-204. https://doi.org/10.1046/j.1432-0436.2001.680407.x
  32. Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within $Pax7^+$ cells at S phase supports a unique role of Myf5 during post hatch chicken myogenesis. Dev Dyn. 2009;238:1001-9. https://doi.org/10.1002/dvdy.21903
  33. Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Ann Rev Cell Dev Biol. 2007;23:645-73. https://doi.org/10.1146/annurev.cellbio.23.090506.123438
  34. Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E. Distinct origins and genetic programs of head muscle satellite cells. Dev Cell. 2009;16:822-32. https://doi.org/10.1016/j.devcel.2009.05.007
  35. Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol. 2010;337:29-41. https://doi.org/10.1016/j.ydbio.2009.10.005
  36. Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol. 2007;7:95. https://doi.org/10.1186/1471-213X-7-95
  37. Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, Choy YH, Kim HC, Jeon KJ, Kim SD, Yeon SH, Park SB, Kang HS. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Tech. 2014b;56:2. https://doi.org/10.1186/2055-0391-56-2
  38. Zhu MJ, Ford SP, Nathanielsz PW, Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol Rep. 2004b;71:1968-73. https://doi.org/10.1095/biolreprod.104.034561
  39. Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR, Xiao Y, Hess B W, Ford SP, Nathanielsz PW, Du M. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in foetuses of obese, over-nourished sheep. J Physiol. 2008;586:2651-64. https://doi.org/10.1113/jphysiol.2007.149633
  40. Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M. Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol End Met. 2009;296:E917-924.
  41. Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW, Du M. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinol. 2010;151:380-7. https://doi.org/10.1210/en.2009-0849
  42. Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol. 2003;35:1151-6. https://doi.org/10.1016/S1357-2725(03)00042-6
  43. Kamanga-Sollo E, White ME, Chung KY, Johnson BJ, Dayton WR. Potential role of G-protein-coupled receptor 30 (GPR30) in estradiol-17beta-stimulated IGF-I mRNA expression in bovine satellite cell cultures. Domes Ani End. 2008;35:254-62. https://doi.org/10.1016/j.domaniend.2008.06.001
  44. Cheek DB, Hill DB, Cornando A, Graham GG. Malnutrition in infancy: changes in muscle and adipose tissue before and after rehabilitation. Paediat Res. 1970;4:135-44. https://doi.org/10.1203/00006450-197003000-00004
  45. Cassens RG, Cooper CC. Red and white muscle. Adv Food Res. 1971;19:1-74.
  46. Henckel P, Oksbjerg N, Erlandsen E, Barton-Gade P, Bejerholm C. Histo- and biochemical characteristics of the longissimus dorsi muscle in pigs and their relationships to performance and meat quality. Meat Sci. 1997;47:311-21. https://doi.org/10.1016/S0309-1740(97)00063-6
  47. Fiedler I, Ender K, Wicke M, Maak S, Von Lengerken G, Meyer W. Structural characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility and different meat quality. Meat Sci. 1999;53:9-15. https://doi.org/10.1016/S0309-1740(99)00030-3
  48. Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle. J Endocri. 2001;170:27-38. https://doi.org/10.1677/joe.0.1700027
  49. Halevy O, Krispin A, Leshem Y, McMurtry JP, Yahav S. Early age heat exposure effects skeletal muscle satellite cell proliferation and differentiation in chicks. Am J Physiol Reg Integ Comp Physiol. 2001;281:302-9. https://doi.org/10.1152/ajpregu.2001.281.1.R302
  50. Sartorelli V, Fulco M. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE. 2004;244:re11.
  51. Sandri M. Signalling in muscle atrophy and hypertrophy. Physiology. 2008;23:160-70. https://doi.org/10.1152/physiol.00041.2007
  52. Egerman MA, Glass DJ. Signalling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49:59-68. https://doi.org/10.3109/10409238.2013.857291
  53. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Mod Mech. 2013;6:25-39. https://doi.org/10.1242/dmm.010389
  54. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanism and promising therapies. Nat Rev Drug Dis. 2015;14:58-74. https://doi.org/10.1038/nrd4467
  55. Laplante M, Sabatini DM. mTOR signalling in growth control and disease. Cell. 2012;149:274-93. https://doi.org/10.1016/j.cell.2012.03.017
  56. Lee SJ. Regulation of muscle mass by myostatin. Ann Rev Cell Dev Biol. 2004;20:61-86. https://doi.org/10.1146/annurev.cellbio.20.012103.135836
  57. Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body mass homeostasis. Acta Physiol. 2012; 205:324-40. https://doi.org/10.1111/j.1748-1716.2012.02423.x
  58. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Sassi AH, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signalling pathways. Cell Mol Life Sci. 2014;71:4361-71. https://doi.org/10.1007/s00018-014-1689-x
  59. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new $TGF-{\beta}$ superfamily member. Nature. 1997;387:83-90. https://doi.org/10.1038/387083a0
  60. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486-8. https://doi.org/10.1126/science.1069525
  61. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, George M. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003;35(4):227-38. https://doi.org/10.1002/gene.10188
  62. Tsuchida K. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta Myology. 2008;27:14-8.
  63. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA. 1998;95(25):14938-43. https://doi.org/10.1073/pnas.95.25.14938
  64. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. AmJ Physiol End Met. 2001;280:E221-8.
  65. Artaza JN, Bhasin S, Mallidis C, Taylor W, Ma K, Gonzalez-Cadavid NF. Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells. J Cell Physiol. 2002;190:170-9. https://doi.org/10.1002/jcp.10044
  66. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem. 2002;277:40735-41. https://doi.org/10.1074/jbc.M206379200
  67. Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, Stotish R. Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophy Res Comm. 2004;315:525-31. https://doi.org/10.1016/j.bbrc.2004.01.085
  68. Attisano L, Wrana JL. Signal transduction by the $TGF-{\beta}$ superfamily. Science. 2002;296:1646-7. https://doi.org/10.1126/science.1071809
  69. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98:9306-11. https://doi.org/10.1073/pnas.151270098
  70. Bradley L, Yaworsky PJ, Walsh FS. Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci. 2008;65:2119-24. https://doi.org/10.1007/s00018-008-8077-3
  71. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737-40. https://doi.org/10.1016/S0092-8674(00)81696-7
  72. Joulia-Ekaza D, Cabello G. Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Exp Cell Res. 2006;312:2401-14. https://doi.org/10.1016/j.yexcr.2006.04.012
  73. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major smad pathways in TGF-${\beta}$ superfamily signalling. Genes Cell. 2002;7:1191-204. https://doi.org/10.1046/j.1365-2443.2002.00599.x
  74. Yan XH, Chen YG. Smad7: Not only a regulator, but also a cross-talk mediator of $TGF-{\beta}$ signalling. Biochem J. 2011;434:1-10. https://doi.org/10.1042/BJ20101827
  75. Zhu X, Topouzis S, Liang LF, Stotish RL. Myostatin signalling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 2004a;26:262-72. https://doi.org/10.1016/j.cyto.2004.03.007
  76. Forbes D, Jackman M, Bishop A, Thomas M, Kambadur R, Sharma M. Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. J Cell Physiol. 2006;206:264-72. https://doi.org/10.1002/jcp.20477
  77. Goodman CA, McNally RM, Hoffmann FM, Hornberger TA. Smad3 induces atrogin-1, inhibits mtor and protein synthesis, and promotes muscle atrophy in vivo. Mol End. 2013;27:1946-57. https://doi.org/10.1210/me.2013-1194
  78. Lokireddy S, McFarlane C, Ge XJ, Zhang HM, Sze SK, Sharma M, Kambadur R. Myostatin induces degradation of sarcomeric proteins through a smad3 signaling mechanism during skeletal muscle wasting. Mol End. 2011;25:1936-49. https://doi.org/10.1210/me.2011-1124
  79. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258-70. https://doi.org/10.1152/ajpcell.00105.2009
  80. Velloso CP. Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol. 2008;154:557-68. https://doi.org/10.1038/bjp.2008.153
  81. Beermann DH, DeVol D. Effects of somatotrophin, somatotrophin releasing factor and somatostatin on growth. In: Pearson AM, Dutson TR, editors. Growth Regulation in Farm Animals. Advances in Meat Research, vol. 7. London: Elsevier; 1991. p. 373-426.
  82. Etherton TD, Bauman DE. Biology of somatotrophin in growth and lactation of domestic animals. Physiol Rev. 1998;78:745-61. https://doi.org/10.1152/physrev.1998.78.3.745
  83. Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle: New insights and potential implications. Nat Rev End. 2014;10:206-14. https://doi.org/10.1038/nrendo.2013.238
  84. Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. Diversity of mechanisms influenced by transthyretin in neurobiology: Development, disease and endocrine disruption. J Neuroend. 2015;27:303-23. https://doi.org/10.1111/jne.12271
  85. Mendel CM, Weisiger RA, Jones AL, Cavalieri RR. Thyroid hormone binding proteins in plasma facilitate uniform distribution of thyroxine within tissues - a perfused rat liver study. Endocri. 1987;120:1742-9. https://doi.org/10.1210/endo-120-5-1742
  86. Schreiber G, Richardson SJ. The evolution of gene expression, structure and function of transthyretin. Comp Biochem Physiol B; Biochem Mol Biol. 1997;116:137-60. https://doi.org/10.1016/S0305-0491(96)00212-X
  87. Aleshire SL, Bradley CA, Richardson LD, Parl FF. Localization of human prealbumin in choroid plexus epithelium. J Histo Cytochem. 1983;31:608-12. https://doi.org/10.1177/31.5.6341455
  88. Dickson PW, Aldred AR, Menting JG, Marley PD, Sawyer WH, Schreiber G. Thyroxine transport in choroid plexus. J Biol Chem. 1987;262:13907-15.
  89. Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem. 1969;244:3230-7.
  90. Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim Biophys Acta. 1849;2015:130-41.
  91. Hancock DL, Wagner JF, Anderson DB. Effects of estrogens and androgens on animal growth. In: Pearson AM, Dutson TR, editors. Growth Regulation in Farm Animals. Advances in Meat Research, vol. 7. Elsevier Applied Science: New York, NY; 1991. p. 255-97.
  92. Spencer GSG. Hormonal systems regulating growth. A review. Livesto Prod Sci. 1985;12:31-46. https://doi.org/10.1016/0301-6226(85)90038-7
  93. Florini JR. Hormonal-control of muscle growth. Mus Nerve. 1987;10:577-98. https://doi.org/10.1002/mus.880100702
  94. Lee EJ, Choi J, Hyun JH, Cho KH, Hwang I, Lee HJ, Chang J, Choi I. Steroid effects on cell proliferation, differentiation and steroid receptor gene expressionin adult bovine satellite cells. Asian-Austra J Anim Sci. 2007;20:501-10. https://doi.org/10.5713/ajas.2007.501
  95. Wheeler TL, Koohmaraie M. Prerigor and postrigor changes in tenderness of bovine longissimus muscle. J Anim Sci. 1994;72:1232-8. https://doi.org/10.2527/1994.7251232x
  96. Maltin CA, Delday MI, Hay SM, Innes GM, Williams PE. Effects of bovine pituitary growth hormone alone or in combination with the beta-agonist clenbuterol on muscle growth and composition in veal calves. Brit J Nutr. 1990;63:535-45. https://doi.org/10.1079/BJN19900140
  97. Beermann DH, Butler WR, Hogue DE, Fishell VK, Dalrymple RH, Ricks A, Scanes CG. Cimaterol-induced muscle hypertrophy and altered endocrine status in lambs. J Anim Sci. 1987;65:1514-24. https://doi.org/10.2527/jas1987.6561514x
  98. Sainz RD, Kim YS, Dunshea FR, Campbell RG. Effects of ractopamine in pig muscles - histology, calpains and ${\beta}$-adrenergic receptors. Aust J Agric Res. 1993;44:1441-8. https://doi.org/10.1071/AR9931441
  99. Rehfeldt C, Schadereit R, Weikard R, Reichel K. Effect of the beta-adrenergic agonist clenbuterol on growth, carcass and skeletal muscle characteristics in broiler chickens. Br Poult Sci. 1997;38:368-75.
  100. Klont RE, Brocks L, Eikelenboom G. Muscle fibre type and meat quality. Meat Sci. 1998;49(1):S219-29. https://doi.org/10.1016/S0309-1740(98)90050-X
  101. Seideman SC, Crouse JD. The effects of sex condition, genotype and diet on bovine muscle fiber characteristics. Meat Sci. 1986;17:55-72. https://doi.org/10.1016/0309-1740(86)90083-5
  102. Jeremiah LE, Gibson LL, Aalhus JL, Dugan MER. Assessment of palatability attributes of the major beef muscles. Meat Sci. 2003;65:949-58. https://doi.org/10.1016/S0309-1740(02)00307-8
  103. Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci. 2010a;88:E51-60. https://doi.org/10.2527/jas.2009-2311
  104. Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Rep. 2010b;82:4-12. https://doi.org/10.1095/biolreprod.109.077099
  105. Feve B. Adipogenesis: cellular and molecular aspects. Best Prac Res; Clin Endo Met. 2005;19:483-99. https://doi.org/10.1016/j.beem.2005.07.007
  106. Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA. Alterations in the TGF-${\beta}$ signaling pathway in myogenic progenitors with age. Aging Cell. 2004;3:353-61. https://doi.org/10.1111/j.1474-9728.2004.00135.x
  107. Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring. Eur J Nutr. 2009;48:62-5. https://doi.org/10.1007/s00394-008-0760-5
  108. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol. 2002;90:11G-8G.
  109. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzutto R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA. 2008;105:1226-31. https://doi.org/10.1073/pnas.0711402105
  110. Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D. Premature aging in skeletal muscle lacking serum response factor. PLoS ONE. 2008;3:e3910. https://doi.org/10.1371/journal.pone.0003910
  111. Dodson MV, Fernyhough ME. Mature adipocytes: Are there still novel things that we can learn from them? Tis Cell. 2008;40:307-8. https://doi.org/10.1016/j.tice.2008.01.002
  112. Dodson MV, Jiang Z, Chen J, Hausman GJ, Guan LL, Novakofsi J, Thompson DP, Lorenzen CL, Fernyhough ME, Mir PS, Reecy JM. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci. 2010;75:R1-8. https://doi.org/10.1111/j.1750-3841.2009.01396.x
  113. Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, adipogenic differentiation. Differentiation. 2001;68:245-53. https://doi.org/10.1046/j.1432-0436.2001.680412.x
  114. Fux C, Mitta B, Kramer BP, Fussenegger M. Dual regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acid Res. 2004;32:e1. https://doi.org/10.1093/nar/gnh001
  115. Poulos S, Hausman G. A comparison of thiazolidinedione-induced adipogenesis and myogenesis in stromal-vascular cells from subcutaneous adipose tissue or semitendinosus muscle of postnatal pigs. J Anim Sci. 2006;84:1076-82. https://doi.org/10.2527/2006.8451076x
  116. Kook SH, Choi KC, Son YO, Lee KY, Hwang IH, Lee HJ, Chang JS, Choi IH, Lee JC. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol Cell. 2006;22:239-45.
  117. Singh NK, Chae HS, Hwang IH, Yoo YM, Ahn CN, Lee SH, Lee HJ, Park HJ, Chung HY. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J Anim Sci. 2007;85:1126-35. https://doi.org/10.2527/jas.2006-524
  118. Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem. 1995;270:28183-7. https://doi.org/10.1074/jbc.270.47.28183
  119. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA. 1995;10:9856-60.
  120. Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, Du M. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J Anim Sci. 2008;86:1296-305. https://doi.org/10.2527/jas.2007-0794

Cited by

  1. NeuroMuscleDB: a Database of Genes Associated with Muscle Development, Neuromuscular Diseases, Ageing, and Neurodegeneration vol.56, pp.8, 2016, https://doi.org/10.1007/s12035-019-1478-5
  2. Insulin-Degrading Enzyme Regulates the Proliferation and Apoptosis of Porcine Skeletal Muscle Stem Cells via Myostatin/MYOD Pathway vol.9, pp.None, 2016, https://doi.org/10.3389/fcell.2021.685593
  3. Identification of Meat Quality Determining Marker Genes in Fibroblasts of Bovine Muscle Using Transcriptomic Profiling vol.69, pp.12, 2021, https://doi.org/10.1021/acs.jafc.0c06973