• 제목/요약/키워드: Muscle Property

검색결과 95건 처리시간 0.026초

미세전류 특정 주파수와 적용시기에 따른 지연성근육통 유발로 인한 근육의 기계적 특성변화 (Effects of Specific Frequency and Application Timing of Microcurrent on the Mechanical Property of Muscle Caused by Delayed Onset Muscle Soreness)

  • 이정우;이슬;두영택
    • 대한통합의학회지
    • /
    • 제7권2호
    • /
    • pp.11-17
    • /
    • 2019
  • Purpose : The purpose of this study was to determine the effects of specific frequency and application timing of microcurrent (MC) on the mechanical property of muscle caused by delayed onset muscle soreness (DOMS). Methods : The subjects were 32 healthy adults with 8 subjects randomly assigned to four groups (I; 40 Hz MC while inducing DOMS, II; 40 Hz MC immediately after inducing DOMS, III; 284 Hz MC while inducing DOMS, IV; 284 Hz MC immediately after inducing DOMS). DOMS is applied to the biceps brachii muscle while MC was applied at an intensity of $300{\mu}A$ for 10 minutes. The mechanical properties of muscle were measured before and immediately after DOMS. Results : In terms of muscle tone, there were significant differences in interaction effects between time and groups. Regarding muscle elasticity and stiffness, there were no significant differences in interaction effects between time and groups but there were only significant differences in main effects based on time. Conclusion : The results indicated that 40 Hz MC had an effect on reducing muscle tone regardless of application timing. However, both 40 Hz and 284 Hz MC did not trigger changes in muscle elasticity and stiffness regardless of application timing.

인체 전경골근의 수의적 수축시 선행 동심성 근수축이 항정상태 등척성 근력에 미치는 영향 (Force Depression Following Active Muscle Shortening during Voluntary Contraction in Human Tibialis Anterior Muscle)

  • 이해동;이성철
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.75-83
    • /
    • 2006
  • The purpose of this study was to investigate steady-state force depression following active muscle shortening in human tibialis anterior muscle during voluntary contractions. Subjects (n = 7; age $24{\sim}39$ years; 7 males) performed isometric reference contractions and isometric-shortening-isometric contractions, using maximal voluntary effort. Force depression was assessed by comparing the steady-state isometric torque produced following active muscle shortening with the purely isometric reference torque obtained at the corresponding joint angle. In order to test for effects of the shortening conditions on the steady-state force depression, the speed of shortening were changed systematically in a random order but balanced design. Ankle dorsiflexion torque and joint angle were continuously measured using a dynamometer. During voluntary contractions, muscle activation of the tibialis anterior and the medical gastrocnemius was recorded using surface electromyography. Force depression during voluntary contractions, with a constant level of muscle activation, was 12 %, on average over all subjects. Force depression was independent of the speeds of shortening ($13.8{\pm}2.9%$, $10.3{\pm}2.6%$ for 15 and 45 deg/sec over 15 deg of shortening, respectively). The results of this study suggest that steady-state force depression is a basic property of voluntarily-contracting human skeletal muscle and has functional implication to human movements.

돼지 근육의 사후 해당속도가 돈육 수리미의 젤 특성에 미치는 영향 (Effect of Glycolysis Rate in Porcine Muscle Postmortem on Gel Property of Pork Surimi)

  • 강근호;양한술;정진연;주선태;박구부
    • 한국축산식품학회지
    • /
    • 제25권4호
    • /
    • pp.423-429
    • /
    • 2005
  • 돈육을 수세하여 돈육 수리미를 제조할 때, 사후 해당 속도가 빠른 돈육을 원료육으로 이용하면 낮은 pH에 기인하여 보수성이 낮은 결과 적은 수분 함량을 보유하는 돈육 수세물을 획득하게 되어 수율이 낮아졌다. 사후 해당 속도가 빠른 돈육은 정상 돈육에 비해 육단백질의 변성이 유발되어 수분 함량이 낮고 치밀한 젤 매트릭스를 형성하여 경도가 높지만 탄력성이 낮은 돈육 수리미를 생산하였다. 뿐만 아니라 사후 해당 속도가 빠른 돈육은 변성된 근장 단백질이 근원섬유 단백질과 결합하여 수세되지 않고 돈육 수세물 내에 잔존하게 되어 돈육 수리미의 색깔을 어둡게 만드는 원인으로 작용한 것으로 사료된다.

바이오센서

  • 홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.

골격근의 노화에 대한 고찰 (A Review of Journals on the Aging Skeletal Muscle)

  • 권오봉;송윤경;임형호
    • 대한추나의학회지
    • /
    • 제4권1호
    • /
    • pp.55-65
    • /
    • 2003
  • The purpose of this article was to contribute to the knowledge of physiological and pathological changes of aging skeletal muscles, and of therapic method. By aging there were changes of distribution of muscle fibers, the loss of muscle mass, the loss of the number of muscle fibers, the loss of glycolysis capacity, the decrease of the oxidative enzymes and muscle vascularization in the skeletal muscles. And as a pathological change, the exhaustive maximal exercise increased oxidative stress that led to oxidative damage which were shown to be implicated in promoting aging. The property of intensity and duration exercise is important not only in keeping human health and physical fitness from oxidative stress, but also for the maintenance of well-being and quality of life.

  • PDF

하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발 (Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients)

  • 박병림;김민선
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

근전위 제어형 인공후두의 설계 (The Design of an Artificial Larynx Controlled by the EMG)

  • 민혜정;최홍식;윤형로;봉정표
    • 대한후두음성언어의학회지
    • /
    • 제8권1호
    • /
    • pp.59-64
    • /
    • 1997
  • In this Paper, we developed an electrolarynx controlled by the EMG(electromyography) of the sternohyoid muscle, and rested the property of the new electrolarynx while normal persons with his own larynx use it. for the examination of property of the developed electrolarynx, our researchers performed three different experiments. The first experiment was tested whether that on/off control of the vibrator of the electrolarynx is synchronized with the activity of the sternohyoid EMG. In the second experiment, it was tested when the lower amplitude of the sternohyoid EMG is produced, whether the higher pitch of the electrolarynx is produced, and vice versa. The third experiment was tested the probability that the electrolarynx can produce the voiceless sound. As the results, we found that the developed electrolarynx had the good produce of the on/off vibrator control and the pitch control of the electrolarynx. Also, we ascertained the possibility that it can produce the voiceless sound.

  • PDF

Higenamine의 Guinea pig 기관 평활근 이완작용 (Bronchodilator Effect of Higenamine in Isolated Guinea-pig Tracheal Smooth Muscle)

  • 윤효인;장기철;홍성근;이창업
    • 대한수의학회지
    • /
    • 제27권1호
    • /
    • pp.35-40
    • /
    • 1987
  • Higenamine, a benzyltetrahydroisopuinoline analog isolated from aconite tuber, has potent isotropic action. Recent studies suggest it may have beta receptor agonistic property in that its inotropic action is blocked by propranolol in isolated rabbit heart. However, no study has been carried out on other organs than heart. Higenamine is expected to have pharmacological actions on smooth muscle on the ground that it has catecholamine moiety and tetrahydrosioquinoline nucleus in its chemical structure, both of which are well known to have smooth muscle relaxation effects. Therefore present study was aimed at determining whether higenamine has bronchodilating effect in isolated guinea pig trachea smooth muscle rich in adrenergic beta receptor and if any, it has agonistic effect on beta receptor. The results were summarized as follows : 1. Higenamine had remarkable bronchodilating effect in guinea pig tracheal smooth muscle in a dose-dependent manner. 2. Bronchodilator effect of higenamine in isolated guinea pig tracheal smooth muscle was blocked competitively by propranolol. The $pD_2$ value of higenamine in isolated guinea pig tracheal smooth muscle was 5.65 and the $pA_2$ value of propranolol against higenamine in the same preparation was 7.97.

  • PDF

Comparison of Physicochemical Characteristics of Hot-boned Chicken Breast and Leg Muscles during Storage at 20℃

  • Yu, Long-Hao;Lee, Eui-Soo;Chen, Hong-Sheng;Jeong, Jong-Youn;Choi, Yun-Sang;Lim, Dong-Gyun;Kim, Cheon-Jei
    • 한국축산식품학회지
    • /
    • 제31권5호
    • /
    • pp.676-683
    • /
    • 2011
  • The aim of this study was to compare the physicochemical changes of hot-boned chicken breast and leg muscles. Chicken breast and leg muscles from 56 broilers were excised within a 15 min post-mortem (PM) and stored at $20^{\circ}C$. Physicochemical traits were determined at 0.5, 6, 12, and 24 h PM. The ultimate pH of leg muscle was higher than that of breast muscle (p<0.05). The content of glycogen in the breast muscle was relatively higher than that in the leg muscle until 6 h PM (p<0.05). R-values showing rigor mortis of breast and leg muscles were completed after or before 6 h PM. Breast muscle had less cooking loss than leg muscle (p<0.05). Drip loss did not significantly differ between breast and leg muscles with the exception of that at 6 h PM. The sarcomere length of leg muscle was relatively longer than that of breast muscle (p<0.05). The MFI of leg muscle was significantly lower than that of breast muscle (p<0.05). The shear force of leg muscle was lower than that of breast muscle at 6 and 12 h PM (p<0.05); however, that of both muscles did not significantly differ at 24 h PM.