• 제목/요약/키워드: Murine hepatocytes

검색결과 11건 처리시간 0.017초

In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC

  • Yoon, Cheol Soo;Kim, Min Keun;Kim, Yeon Sook;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.44.1-44.17
    • /
    • 2018
  • Background: Coffee extract has been investigated by many authors, and many minor components of coffee are known, such as polyphenols, diterpenes (kahweol and cafestol), melanoidins, and trigonelline, to have anti-inflammatory, anti-oxidant, anti-angiogenic, anticancer, chemoprotective, and hepatoprotective effects. Therefore, it is necessary to know its pharmacological effect on hepatocytes which show the most active cellular regeneration in body. Methods: In order to determine whether coffee extract has a beneficial effect on the liver, 20 C57BL/6J mice were intraperitoneally injected once with dialyzed coffee extract (DCE)-2.5 (equivalent to 2.5 cups of coffee a day in man), DCE-5, or DCE-10, or normal saline (control), and then followed by histological observation and IP-HPLC (immunoprecipitation high performance liquid chromatography) over 24 h. Results: Mice treated with DCE-2.5 or DCE-5 showed markedly hypertrophic hepatocytes with eosinophilic cytoplasms, while those treated with DCE-10 showed slightly hypertrophic hepatocytes, which were well aligned in hepatic cords with increased sinusoidal spaces. DCE induced the upregulations of cellular proliferation, growth factor/RAS signaling, cellular protection, p53-mediated apoptosis, angiogenesis, and antioxidant and protection-related proteins, and the downregulations of NFkB signaling proteins, inflammatory proteins, and oncogenic proteins in mouse livers. These protein expression changes induced by DCE were usually limited to the range ± 10%, suggesting murine hepatocytes were safely reactive to DCE within the threshold of physiological homeostasis. DCE-2.5 and DCE-5 induced relatively mild dose-dependent changes in protein expressions for cellular regeneration and de novo angiogenesis as compared with non-treated controls, whereas DCE-10 induced fluctuations in protein expressions. Conclusion: These observations suggested that DCE-2.5 and DCE-5 were safer and more beneficial to murine hepatocytes than DCE-10. It was also found that murine hepatocytes treated with DCE showed mild p53-mediated apoptosis, followed by cellular proliferation and growth devoid of fibrosis signaling (as determined by IP-HPLC), and subsequently progressed to rapid cellular regeneration and wound healing in the absence of any inflammatory reaction based on histologic observations.

Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

  • Han, Jae Yun;Lee, Sangkyu;Yang, Ji Hye;Kim, Sunju;Sim, Juhee;Kim, Mi Gwang;Jeong, Tae Cheon;Ku, Sae Kwang;Cho, Il Je;Ki, Sung Hwan
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.105-115
    • /
    • 2015
  • Background: Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods: The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results: Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-a expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion: These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease.

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

알파 아마니틴에 의한 간독성에 대한 녹차 추출물의 보호 효과 (The Protective Effect of Green Tea Extract on Alpha-amanitin Induced Hepatotoxicity)

  • 안수환;선경훈;홍란;이병래;박용진
    • 대한임상독성학회지
    • /
    • 제17권2호
    • /
    • pp.58-65
    • /
    • 2019
  • Purpose: Alpha-amanitin induces potent oxidative stress and apoptosis, and may play a significant role in the pathogenesis of hepatotoxicity. This study examined the mechanisms of α-amanitin-induced apoptosis in vitro, and whether green tea extract (GTE) offers protection against hepatic damage caused by α-amanitin (AMA) induced apoptosis in vivo. Methods: The effects of GTE and SIL on the cell viability of cultured murine hepatocytes induced by AMA were evaluated using an MTT assay. Apoptosis was assessed by an analysis of DNA fragmentation and caspase-3. In the in vivo protocol, mice were divided into the following four groups: control group (0.9% saline injection), AMA group (α-amanitin 0.6 mg/kg), AMA+SIL group (α-amanitin and silibinin 50 mg/kg), and AMA+GTE group (α-amanitin and green tea extract 25 mg/kg). After 48 hours of treatment, the hepatic aminotransferase and the extent of hepatonecrosis of each subject was evaluated. Results: In the hepatocytes exposed to AMA and the tested antidotes, the cell viability was significantly lower than the AMA only group. An analysis of DNA fragmentation showed distinctive cleavage of hepatocyte nuclear DNA in the cells exposed to AMA. In addition, the AMA and GTE or SIL groups showed more relief of the cleavage of the nuclear DNA ladder. Similarly, values of caspase-3 in the AMA+GTE and AMA+SIL groups were significantly lower than in the AMA group. The serum AST and ALT levels were significantly higher in the AMA group than in the control and significantly lower in the AMA+GTE group. In addition, AMA+GTE induced a significant decrease in hepatonecrosis compared to the controls when a histologic grading scale was used. Conclusion: GTE is effective against AMA-induced hepatotoxicity with its apoptosis regulatory properties under in vitro and in vivo conditions.

Triton WR-1339 주사에 의한 고지혈증 유발시 간세포내 지방 축적에 관한 형태학적 연구 (Accumulation of Lipid Including Cholesterol in Murine Hepatocytes with Hyperlipidemia Induced by Triton WR-1339)

  • 박인식;안상현;김진택
    • 동국한의학연구소논문집
    • /
    • 제6권1호
    • /
    • pp.107-115
    • /
    • 1997
  • 본 실험은 Triton WR-1339를 생쥐에 복강주사한 후 시간의 경과에 따른 간조직의 일반적인 형태변화와 간세포내의 콜레스테롤을 비롯한 지방입자의 분포변화를 관찰하기 위해 시행되었다. Triton 주사 후 간조직에서 나타난 일반적인 형태변화는 48시간에서 그물구조의 세포질룰 가진 간세포가 간엽 전체에서 관찰되었고, 간세포 손상으로 인해 간세포판은 사라졌다. 간조직내의 지방분포변화는 triton주사 후 48시간에 전체 간엽에서 지방입자의 과출현을 확인할 수 있었으며, 지방입자의 크기도 대조군에 비해 큰 것으로 나타났다. 간조직내의 콜레스테롤입자의 분포 변화는 triton 주사 후 48시간에 콜레스테롤입자가 간엽전체에서 과출현하는 것이 관찰되었다. 이상의 결과로 볼 때 triton 주사 후 지방대사이상에 의해 그 결과 간조직내에서 콜레스테롤를 비롯한 지방입자의 축적이 증가되는 고지혈증 병변이 유도된 것으로 사료된다.

  • PDF

Anti-Obesity and Lipid Metabolism Effects of Ulmus davidiana var. japonica in Mice Fed a High-Fat Diet

  • Lee, Sung-Gyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1011-1021
    • /
    • 2021
  • The root bark of Ulmus davidiana var. japonica (Japanese elm) is used in Korea and other East Asian countries as a traditional herbal remedy to treat a variety of inflammatory diseases and ailments such as edema, gastric cancer and mastitis. For this study, we investigated the lipid metabolism and anti-obesity efficacy of ethyl alcohol extract of Ulmus davidiana var. japonica root bark (UDE). First, HPLC was performed to quantify the level of (+)-catechin, the active ingredient of UDE. In the following experiments, cultured 3T3-L1 pre-adipocytes and high-fat diet (HFD)-fed murine model were studied for anti-obesity efficacy by testing the lipid metabolism effects of UDE and (+)-catechin. In the test using 3T3-L1 pre-adipocytes, treatment with UDE inhibited adipocyte differentiation and significantly reduced the production of adipogenic genes and transcription factors PPARγ, C/EBPα and SREBP-1c. HFD-fed, obese mice were administered with UDE (200 mg/kg per day) and (+)-catechin (30 mg/kg per day) by oral gavage for 4 weeks. Weight gain, epididymal and abdominal adipose tissue mass were significantly reduced, and a change in adipocyte size was observed in the UDE and (+)-catechin treatment groups compared to the untreated control group (***p < 0.001). Significantly lower total cholesterol and triglyceride levels were detected in UDE-treated HFD mice compared to the control, revealing the efficacy of UDE. In addition, it was found that lipid accumulation in hepatocytes was also significantly reduced after administration of UDE. These results suggest that UDE has significant anti-obesity and lipid metabolism effects through inhibition of adipocyte differentiation and adipogenesis.

쿠퍼 세포에서 Nrf2 활성화 매개 죽력의 염증 및 인플라마좀 억제 효능 (Anti-inflammation and Anti-inflammasome Effects of Bambusae Caulis in Liquamen mediated by Nrf2 Activation in Kupffer cells)

  • 양지혜
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.253-264
    • /
    • 2023
  • Objectives : Bambusae Caulis in Liquamen (BCL), a traditional herbal medicine, is a distilled product of condensation from the burning of fresh bamboo stems. We previously identified the anti-oxidant capacity of BCL in hepatocytes and suggested that BCL is a promising therapeutic candidate for treating oxidative stress-induced hepatocellular damage. Despite the importance of the role played by Kupffer cells in liver disease, the efficacy of BCL on Kupffer cells is unclear. Therefore, this study aimed to determine whether BCL could suppress LPS-induced inflammation and LPS+ATP-induced inflammasomes in Kupffer cells. Methods : We used ImKCs, a murine immortalized Kupffer cell line to examined whether BCL inhibited LPS-induced inflammation response and oxidave stress. And, we prepared a total of 18 L of BCL, purchased from Bamboo Forest Foods Co., Ltd. (648 Samdari, Damyang-eup, Damyang-gun, Jeollanam-do, Republic of Korea), was concentrated using a decompression concentrator. Result : The LPS-induced release of inflammatory cytokines was abolished by BCL treatment. Also, BCL treatment suppressed the LPS+ATP-induced expression of inflammasome proteins (NLRP3, IL-1, and IL-18), and inhib β ited the release of IL-1 . BCL decreased LPS-or LPS+ATP-induc β ed reactive oxygen species production. In addition, BCL increased nuclear translocation of Nrf2 and the expression of HO-1 in a time-dependent manner. Conclusion : These results suggest the efficacy of BCL with respect to its anti-inflammatory and anti-inflammasome effects mediated by Nrf2 in Kupffer cells.

혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향 (Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • 대한의생명과학회지
    • /
    • 제5권1호
    • /
    • pp.85-93
    • /
    • 1999
  • 마우스 간 세포주인 BNL CL.2의 시험관내 배양에서 혈청과 IFN-$\gamma$가 세포주의 nitric oxide (NO)생성과 세포 손상에 미치는 영향을 알아보기 위한 실험을 하였다. 혈청이 공급된 배양에서 IFN-$\gamma$에 의한 세포 생존율은 거의 변동이 없었으나, 혈청을 제거한 배양에서는 약 65%의 생존율이 유지되었으며, NO생성 억제제인 N$^{G}$-monomethy-L-arginine (NMA)의 첨가는 농도 의존적으로 세포의 생존율을 감소시켰다. 혈청이 제거된 BNL CL.2 세포주는 IFN-$\gamma$ 단독 처리에서도 NO를 생성할수 있었으며, IFN-$\gamma$와 lipopolysaccharide (LPS)의 복합 처리는 세포주의 NO 생성을 상승적으로 증가시 켰다. 또한 protein tyrosine kinase (PTK) inhibitor인 herbimycin A와 genistein에 의해서 NO 생성이 억제되어 PTK의 활성이 혈청이 고갈된 BNL CL.2세포에서 NO의 생성에 중요한 역할을 담당하고 있기 때문으로 판단된다. IFN-$\gamma$의 독성은 혈청을 제거시킬 때 NO 생성 억제제에 상승적으로 간세포를 손상시키며, 이때 NO가 IFN-$\gamma$에 의해 유도된 손상을 어느 정도 억제시키는 것을 알 수 있었다.

  • PDF

Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향 (Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes)

  • 아자모프 바커부딘;강여원;이찬희;심완석;이광민;송박용
    • 생명과학회지
    • /
    • 제34권4호
    • /
    • pp.227-235
    • /
    • 2024
  • 약물이나 허브 제품으로 인한 간세포 손상은 이러한 화합물을 만성적으로 투여할 때 일어날 수 있는 중요한 문제 중 하나이다. 따라서 여러 가지의 치료 과정 중 간세포 생존율을 향상시키는 것은, 약물 적용에 있어 광범위한 기회를 제공할 수 있다. Valproic acid (VPA)는 자연적으로 발생하는 발레르산에서 파생된 분지형 단사슬 지방산으로 뇌전증과 발작을 치료하는 데 일반적으로 사용된다. 뿐만 아니라 VPA는 암, HIV 치료, 신경 퇴행성 질환에 수많은 효과를 발휘하지만, 간에 대한 VPA의 잠재적인 영향과 그 작용 메커니즘은 완전히 설명되지 않았다. 여기서, 우리는 VPA의 처리가 쥐 간세포(Hepa1c1c7)에서 PPAR 알파(PPAR-α)와 섬유아세포 성장 인자 21(FGF21)의 전사 수준을 증가시킨다는 것을 입증했다. VPA에 의해 유도된 FGF21 발현은 PPAR-α 결손 조건에서 상당히 억제되었다. 후속 실험에서 FGF21 신호 경로가 FGF 수용체 억제제에 의해 차단되었을 때, 간세포 생존력이 크게 억제되었음을 보여주었다. 마지막으로, 우리는 AMPK 인산화가 VPA에 의해 유도된 PPAR-α 증가에 작용하지 않는다는 것을 추가로 확인했다. 이러한 결과는 FGF21 발현의 증가가 VPA에 의해 유도된 간 독성을 완화시킬 수 있다는 것을 제시하며, 이와 같은 결과는 FGF21의 증감 여부가 VPA 치료 중 나타날 수 있는 간 손상을 예측하는 잠재적인 바이오마커로 사용될 수 있음을 제시한다.