DOI QR코드

DOI QR Code

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo (Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases) ;
  • Ji-Eun Lee (Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases) ;
  • Do-Won Ham (Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases) ;
  • Eun-Hee Shin (Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases)
  • Received : 2023.12.29
  • Accepted : 2024.01.29
  • Published : 2024.02.29

Abstract

The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (No. NRF-2022R1A2C1009234) and also by grant no. 02-2022-0009 from the Seoul National University Bundang Hospital (SNUBH) Research Fund.

References

  1. Lee JH, Yuk JM, Cha GH, Lee YH. Expression of cytokines and co-stimulatory molecules in the Toxoplasma gondii-infected dendritic cells of C57BL/6 and BALB/c mice. Parasites Hosts Dis 2023;61(2):138. https://doi.org/10.3347/PHD.22150
  2. Kim GH, Kwak JH, Park YH. Elevated interleukin-10 levels in patients with ocular toxoplasmosis. Parasites Hosts Dis 2023;61(3):310. https://doi.org/10.3347/PHD.22172
  3. Seo SH, Shin JH, Ham DW, Shin EH. PTEN/AKT signaling pathway related to hTERT downregulation and telomere shortening induced in Toxoplasma GRA16-expressing colorectal cancer cells. Biomed Pharmacother 2022;153:113366. https://doi.org/10.1016/j.biopha.2022.113366
  4. Zhang Y, Lai BS, Juhas M, Zhang Y. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiol Res 2019;227:126293. https://doi.org/10.1016/j.micres.2019.06.003.5
  5. Kim SG, Seo SH, Shin JH, Yang JP, Lee SH, et al. Increase in the nuclear localization of PTEN by the Toxoplasma GRA16 protein and subsequent induction of p53-dependent apoptosis and anticancer effect. J Cell Mol Med 2019;23(5):3234-3245. https://doi.org/10.1111/jcmm.14207
  6. Seo SH, Kim SG, Shin JH, Ham DW, Shin EH. Toxoplasma gra16 inhibits nf-κb activation through pp2a-b55 upregulation in non-small-cell lung carcinoma cells. Int J Mol Sci 2020;21(18):6642. https://doi.org/10.3390/ijms21186642
  7. Krishnamurthy S, Saeij JP. Toxoplasma does not secrete the GRA16 and GRA24 effectors beyond the parasitophorous vacuole membrane of tissue cysts. Front Cell Infect Microbiol 2018;8:366. https://doi.org/10.3389/fcimb.2018.00366
  8. Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 2016;20(1):72-82. https://doi.org/10.1016/j.chom.2016.06.006
  9. Sasai M, Yamamoto M. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Exp Mol Med 2019;51(12):1-10. https://doi.org/10.1038/s12276-019-0353-9
  10. Seizova S, Ruparel U, Garnham AL, Bader SM, Uboldi AD, et al. Transcriptional modification of host cells harboring Toxoplasma gondii bradyzoites prevents IFN gamma-mediated cell death. Cell Host Microbe 2022;30(2):232-247. https://doi.org/10.1016/j.chom.2021.11.012
  11. Xu Y, Wang J, Ren H, Dai H, Zhou Y, et al. Human endoderm stem cells reverse inflammation-related acute liver failure through cystatin SN-mediated inhibition of interferon signaling. Cell Res 2023;33(2):147-164. https://doi.org/10.1038/s41422-022-00760-5
  12. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012;143(5):1158-1172. https://doi.org/10.1053/j.gastro.2012.09.008
  13. Wesemann DR, Benveniste EN. STAT-1α and IFN-γ as modulators of TNF-α signaling in macrophages: regulation and functional implications of the TNF receptor 1: STAT-1α complex. J Immunol 2003;171(10):5313-5319. https://doi.org/10.4049/jimmunol.171.10.5313
  14. Sutti S, Bruzzi S, Albano E. The role of immune mechanisms in alcoholic and nonalcoholic steatohepatitis: a 2015 update. Expert Rev Gastroenterol Hepatol 2016;10(2):243-253. https://doi.org/10.1586/17474124.2016.1111758
  15. Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, et al. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022;367:59-66. https://doi.org/10.1016/j.toxlet.2022.07.813
  16. Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol 2022;44(4):445-459. https://doi.org/10.1007/s00281-022-00910-2
  17. Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 2016;20(1):72-82. https://doi.org/10.1016/j.chom.2016.06.006
  18. Huang Z, Liu H, Nix J, Xu R, Knoverek CR, et al. The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment. Nat Commun 2022;13(1):4047. https://doi.org/10.1038/s41467-022-31720-7
  19. Krause CD, He W, Kotenko S, Pestka S. Modulation of the activation of Stat1 by the interferon-γ receptor complex. Cell Res 2006;16(1):113-123. https://doi.org/10.1038/sj.cr.7310015
  20. Bassiony H, Sabet S, Salah El-Din TA, Mohamed MM, El-Ghor AA. Magnetite nanoparticles inhibit tumor growth and upregulate the expression of P53/P16 in Ehrlich solid carcinoma bearing mice. PLoS One 2014;9(11):e111960. https://doi.org/10.1371/journal.pone.0111960
  21. Davey GM, Heath WR, Starr R. SOCS1: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens 2006;67(1):1-9. https://doi.org/10.1111/j.1399-0039.2005.00532.x
  22. Liu W, Zeng X, Liu Y, Liu J, Li C, et al. The immunological mechanisms and immune-based biomarkers of drug-induced liver injury. Front Pharmacol 2021;12:723940. https://doi.org/10.3389/fphar.2021.723940
  23. Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review. Therap Adv Gastroenterol 2023;16:17562848231163410. https://doi.org/10.1177/17562848231163410
  24. Katarey D, Verma S. Drug-induced liver injury. Clin Med (Lond) 2016;16(suppl):104-109. https://doi.org/10.7861/clinmedicine.16-6s-s104
  25. Tasnim F, Huang X, Lee CZW, Ginhoux F, Yu H. Recent advances in models of immune-mediated drug-induced liver injury. Front Toxicol 2021;3:605392. https://doi.org/10.3389/ftox.2021.605392
  26. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021;184(1):149-168. https://doi.org/10.1016/j.cell.2020.11.025
  27. Bradham CA, Plümpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol 1998;275(3):G387-G392. https://doi.org/10.1152/ajpgi.1998.275.3.G387
  28. Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P, et al. Mixed lineage kinase 3 mediates the induction of CXCL10 by a STAT1-dependent mechanism during hepatocyte lipotoxicity. J Cell Biochem 2017;118(10):3249-3259. https://doi.org/10.1002/jcb.25973
  29. Iwanaszko M, Kimmel M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics 2015;16(1):1-8. https://doi.org/10.1186/s12864-015-1511-7
  30. Shanmugam N, Kim YS, Lanting L, Natarajan R. Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J Biol Chem 2003;278(37):34834-34844. https://doi.org/10.1074/jbc.M302828200
  31. Song X, Shen Y, Lao Y, Tao Z, Zeng J. CXCL9 regulates acetaminophen-induced liver injury via CXCR3. Exp Ther Med 2019;18(6):4845-4851. https://doi.org/10.3892/etm.2019.8122
  32. van Loo G, Bertrand MJ. Death by TNF: a road to inflammation. Nat Rev Immunol 2023;23(5):289-303. https://doi.org/10.1038/s41577-022-00792-3
  33. Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020;138:111240. https://doi.org/10.1016/j.fct.2020.111240
  34. Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, et al. Immune-mediated drug-induced liver injury: immunogenetics and experimental models. Int J Mol Sci 2021;22(9):4557. https://doi.org/10.3390/ijms22094557
  35. Bottens RA, Yamada T. Cell-penetrating peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers (Basel) 2022;14(22):5546. https://doi.org/10.3390/cancers14225546