• Title/Summary/Keyword: Multiscale Modeling

Search Result 89, Processing Time 0.022 seconds

A Study on the Utilization of Air Quality Model to Establish Efficient Air Policies: Focusing on the Improvement Effect of PM2.5 in Chungcheongnam-do due to Coal-fired Power Plants Shutdown (효율적인 대기정책 마련을 위한 대기질 모델 활용방안 고찰: 노후 석탄화력발전소 가동중지에 따른 충남지역 PM2.5 저감효과 분석을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Lee, Jae-Bum;Choi, Ki-Cheol;Jang, Lim-Seok;Choi, Kwang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.687-696
    • /
    • 2018
  • In order to develop effective emission abatement strategies for coal-fired power plants, we analyzed the shutdown effects of coal-fired power plants on $PM_{2.5}$ concentration in June by employing air quality model for the period from 2013 to 2016. WRF (Weather Research and Forecast) and CMAQ(Community Multiscale Air Quality) models were used to quantify the impact of emission reductions on the averaged $PM_{2.5}$ concentrations in June over Chungcheongnam-do area in Korea. The resultant shutdown effects showed that the averaged $PM_{2.5}$ concentration in June decreased by 1.2% in Chungcheongnam-do area and decreased by 2.3% in the area where the surface air pollution measuring stations were located. As a result of this study, it was confirmed that it is possible to analyze policy effects considering the change of meteorology and emission and it is possible to quantitatively estimate the influence at the maximum impact region by utilizing the air quality model. The results of this study are expected to be useful as a basic data for analyzing the effect of $PM_{2.5}$ concentration change according to future emission changes.

Characteristics of flow field of nose-only exposure chamber for inhalation toxicity evaluation (흡입독성평가를 위한 비부노출 챔버의 유동흐름 특성)

  • Noh, Hakjae;Bong, Choonkeun;Bong, Hakyung;Kim, Yonggu;Cho, Myunghaing;Kim, Sanghwa;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this work, we evaluated the characteristics of flow field and uniformity of the nose-only exposure chambers for the inhalation toxicity test. Computational fluid dynamics (CFD) modeling was carried out to demonstrate uniformity of the nose-only exposure chambers. Because it is very important in the inhalation toxicity experiments that test materials are distributed uniformly to each holder of the chamber. The test was done with these 3 types of chamber with different form to develop inhalation toxicity evaluation system, easy-to-operate system among exposure chamber used for evaluating inhalation toxicity of environmental chemical mixtures. Through CFD interpretation, nose-only exposure chamber was made with the selection of the optimal conditions. For its evaluation, one type of fragrance was selected and measured particle size distribution of each port. The gene becoming luminous to green fluorescence was combined with GPT-SPE, a type of tGFP vector, to be inhaled to the mouse. Based on this, luminous intensity was checked. As a result, total particle number concentration of each port had average value of $3.17{\times}10^6{\sharp}/cm^3$ and range of the highest and lowest concentration value was approximately ${\pm}4.8%$. Autopsy of lung tissues of mouse showed that it had clearly better delivery of gene compared to the control group.

Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model (UM-CMAQ-Pollen 모델의 참나무 꽃가루 배출량 산정식 개선과 예측성능 평가)

  • Kim, Tae-Hee;Seo, Yun Am;Kim, Kyu Rang;Cho, Changbum;Han, Mae Ja
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.

A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network (DNN을 활용한 부산지역 초미세먼지 예보방안 )

  • Woo-Gon Do;Dong-Young Kim;Hee-Jin Song;Gab-Je Cho
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.595-611
    • /
    • 2023
  • The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area (충남지역 대형 점오염원이 주변지역 초미세먼지 농도에 미치는 영향)

  • Kim, Soontae;Kim, Okgil;Kim, Byeong-Uk;Kim, Hyun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.159-173
    • /
    • 2017
  • The Weather Research and Forecast (WRF) - Community Multiscale Air Quality (CMAQ) system was applied to investigate the influence of major point sources located in Chungcheongnam-do (CN) on surface $PM_{2.5}$ (Particulate Matter of which diameter is $2.5{\mu}m$ or less) concentrations in its surrounding areas. Uncertainties associated with contribution estimations were examined through cross-comparison of modeling results using various combinations of model inputs and setups; two meteorological datasets developed with WRF for 2010 and 2014, and two domestic emission inventories for 2010 and 2013 were used to estimate contributions of major point sources in CN. The results show that contributions of major point sources in CN to annual $PM_{2.5}$ concentrations over Seoul, Incheon, Gyeonggi, and CN ranged $0.51{\sim}1.63{\mu}g/m^3$, $0.71{\sim}1.62{\mu}g/m^3$, $0.63{\sim}1.66{\mu}g/m^3$, and $1.04{\sim}1.86{\mu}g/m^3$, respectively, depending on meteorology and emission inventory choice. It indicates that the contributions over the surrounding areas can be affected by model inputs significantly. Nitrate was the most dominant $PM_{2.5}$ component that was increased by major point sources in CN followed by sulfate, ammonium, and others. Based on the model simulations, it was estimated that primary $PM_{2.5}$ $(PPM)-to-PM_{2.5}$ conversion rates were 41.3~50.7 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 12.4~18.3 ($10^{-6}{\mu}g/m^3/TPY$) for Seoul, Incheon, and Gyeonggi, respectively. In addition, spatial gradients of PPM contributions show very steep trends. $NO_X$-to-nitrate conversion rates were 7.61~12.3 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.94~11.3 ($10^{-6}{\mu}g/m^3/TPY$) for the sub-regions in the SMA. $SO_2$-to-sulfate conversion rates were 4.04~5.28 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.73~4.43 ($10^{-6}{\mu}g/m^3/TPY$) for the SMA, respectively.

A High-resolution Numerical Simulation and Evaluation of Oak Pollen Dispersion Using the CMAQ-pollen Model (CMAQ-pollen 모델을 이용한 참나무 꽃가루 확산 고해상도 수치모의 및 검증)

  • Oh, Inbo;Kim, Kyu Rang;Bang, Jin-Hee;Lim, Yun-Kyu;Cho, Changbum;Oh, Jae-Won;Kim, Yangho;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • The aim of this study is to evaluate the accuracy and variability of the oak pollen concentrations over the Seoul metropolitan region (SMR) simulated by the Community Multiscale Air Quality (CMAQ)-based pollen dispersion model, which is the CMAQ-pollen model integrated with the improved oak pollen emission model(PEM-oak). The PEM-oak model developed is based on hourly emission flux parameterization that includes the effects of plant-specific release, meteorological adjustment, and diurnal variations of oak pollen concentrations. A 33 day-run for oak pollen simulation was conducted by the CMAQ-pollen model with a 3 km spatial resolution for the SMR during the 2014 spring pollen season. Modeled concentrations were evaluated against the hourly measurements at three Burkard sampling sites. Temporal variations of oak concentrations were largely well represented by the model, but the quantitative difference between simulations and measurements was found to be significant in some periods. The model results also showed that large variations in oak pollen concentrations existed in time and space and high concentrations in the SMR were closely associated with the regional transport under strong wind condition. This study showed the effective application of the CMAQ-pollen modeling system to simulate oak pollen concentration in the SMR. Our results could be helpful in providing information on allergenic pollen exposure. Further efforts are needed to further understand the oak pollen release characteristics such as interannual variation of the oak pollen productivity and its spatio-temporal flowering timing.

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.