• 제목/요약/키워드: Multiresolution analysis

검색결과 84건 처리시간 0.027초

다해상도 방향성 정보를 이용한 지문영상의 특이점 추출 (Extraction of singular points of fingerprint image using multiresolution directional information)

  • 이준재;심재창;황석윤;남재열;이주형
    • 한국통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.928-938
    • /
    • 1997
  • We propose an algorithm for extracting singular points of fingerprint image using directional information. First, we extract the candidates of singular points using Poincare index in two(lower and higher) resolutional directional images. Then we remove the false singular points using smoothing technique from lower resolutional directional image. And finally we select the singular points in higher resolution corresponding to those in lower resolution. The possible missing points in lower resolution are found by computing Poincare index algong the proposed small curve. And the reliable points are selected from analysis around them. We also propose a method for segmentation of fingerprint as preprocessing step to enhance the computational speed and the performance of system.

  • PDF

A Study for the Adaptive wavelet-based Image Merging method

  • Kim, Kwang-Yong;Yoon, Chang-Rak;Kim, Kyung-Ok
    • 대한공간정보학회지
    • /
    • 제10권5호
    • /
    • pp.45-51
    • /
    • 2002
  • The goal of image merging techniques are to enhance the resolution of low-resolution images using the detail information of the high-resolution images. Among the several image merging methods, wavelet-based image merging techniques have the advantages of efficient decorrelation of image bands and time-scale analysis. However, they have no regard for spatial information between the bands. In other words, multiresolution data merging methods merge the same information-the detail information of panchromatic image-with other band images, without considering specific characteristics. Therefore, a merged image contains much unnecessary information. In this paper, we discussed this 'mixing' effect and, proposed a method to classify the detail information of the panchromatic image according to the spatial and spectral characteristics, and to minimize distortion of the merged image.

  • PDF

Biorthogonal Wavelets-based Landsat 7 Image Fusion

  • Choi, Myung-Jin;Kim, Moon-Gyu;Kim, Tae-Jung;Kim, Rae-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.724-726
    • /
    • 2003
  • Currently available image fusion methods are not efficient for fusing the Landsat 7 images. Significant color distortion is one of the major problems. In this paper, using the well-known wavelet based method for data fusion between high-resolution panchromatic and low-resolution multispectral satellite images, we performed Landsat 7 image fusion. Based on the experimental results obtained from this study, we analyzed some reasons for color distortion. A new approach using the biorthogonal wavelets based method for data fusion is presented. This new method has reached an optimum fusion result - with the same spectral resolution as the multispectral image and the same spatial resolution as the panchromatic image with minimum artifacts.

  • PDF

정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화 (Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling)

  • 장호근;박주성
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.77-85
    • /
    • 2001
  • 본 논문에서는 폴리포닉 음과 같은 복잡한 스펙트럼을 갖는 오디오 신호를 정현파 성분으로 모델링하고, 이를 바탕으로 고음질의 시간축 변화된 음을 얻는 방법을 제안한다. 입력 신호는 옥타브 밴드 구조의 다중 해상도 필터 뱅크를 통과하고 여기에서 나온 각 서브밴드 신호로부터 정현파 성분이 축출된다. 서브밴드 신호의 정현파 분석시 정현파 성분을 추출하는 구간의 크기를 국지적인 신호의 특성에 따라 다르게 해 주는 동적 세그멘테이션 방법을 적용한다. 이렇게 함으로써 기존 정현파 모델링에서 신호의 천이 구간에서 발생하는 퍼짐 현상을 개선하고, 시간축 변화 시에도 원래 음에 가까운 음질을 얻을 수 있다. 정현파 분석을 위한 스펙트럼 분석 도구로는 심리 음향 모델을 적용한 matching pursuit을 사용함으로써 정현파 성분의 갯수를 줄이고, matching pursuit의 반복 과정에 대한 합리적인 정지 조건을 제공할 수 있다. 정현파 성분으로 표현하기 어려운 신호의 잡음 성분은 원래 신호에서 정현파 성분으로 합성된 신호를 뺀 것으로 얻을 수 있으며, 스펙트럼 포락선 근사화 방법으로써 모델링된다. 본 논문의 알고리즘을 적용해 다양한 폴리포닉 음에 대해 실험한 결과 제안한 정현파 모델링 방법이 원래 신호의 음질을 잘 복원할 수 있고, 시간축 변화율이 큰 경우에도 신호의 천이 구간을 잘 표현할 수 있음을 확인하였다.

  • PDF

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.

웨이브렛 필터를 이용한 복합 중첩 근신호의 최적화 분리 알고리즘 (An Algorithm for the Optimum Separation of Superimposed EMG Signal Using Wavelet Filter)

  • 이영석;김성환
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.319-326
    • /
    • 1996
  • Clinical myography(EMG) is a technique for diagnosing neuromuscular disorders by analyzing the electrical signal that can be records by needle electrode during a muscular contraction. The EMG signal arises from electrical discharges that accompany the generation of force by groups of muscular fiber, and the analysis of EMG signal provides symptoms that can distinguish disorder of mLecle from disor- ders of nerve. One of the methods for analysis of EMG signal is to separate the individual discharge-the motor unit action potentials(MVAPS) - from EMG signal. But we can only observe the EMG signal that is a superimposed version of time delayed MUAPS. To obtain the information about MUAP(, i.e., position, firing number, magnitude etc), first of all, a method that can separate each MUAP from the EMG signal must be developed Although the methods for MUAP separation have been proposed by many researcherl they have required heavy computational burden. In this paper, we proposed a new method that has less computational burden and performs more reliable separation of superimposed EMG signal using wavelet filter which has multiresolution analysis as major property. As a result, we develope the separation algorithm of superimposed EMG signal which has less computational burden than any other researchers and exacutes exact separation process. The performance of this method has been discussed in the automatic resolving procedure which is neccessary to identify every firing of every motor unit from the EMG pattern.

  • PDF

웨이블릿 기반의 고속 움직임 예측 기법 (A wavelet-based fast motion estimation)

  • 배진우;선동우;유지상
    • 방송공학회논문지
    • /
    • 제8권3호
    • /
    • pp.297-305
    • /
    • 2003
  • 본 논문에서는 저비트율 부호화에 적합한 웨이블릿 기반의 고속 움직임 예측 기법을 제안한다. 제안한 논문에서는 웨이블릿 계수의 차이를 기반으로 한 중요 블록(significant block : SB) 정보를 사용하여 움직임이 존재하는 블록에 대해 선택적으로 움직임 예측함으로써 움직임 벡터의 수가 증가하는 MRME(multiresolution motion estimation)의 단점을 보완할 수 있었다. 또한 웨이블릿 변환의 특성 중 하나인 해상도 분할 특성을 이용하여 quarter-band까지 움직임을 예측하게 되고, 이에 대한 보간작업으로 영상을 재구성한다. 선택적 움직임 추정과 움직임 보상된 quarter-band의 보간작업을 통해 고주파 부대역에서 존재할 수 있는 예측 오차를 줄일 수 있었으며, 동시에 계산량도 감소시킬 수 있었다. 제안된 기법은 기존의 기법과 비교하여 약 70% 이상의 계산량을 감소시킬 수 있었으며, 영상의 화질 면에서도 0.1 ∼ 1.2dB 정도 향상되어 거의 대등한 PSNR을 유지하는 것을 모의 실험을 통하여 확인하였다.

A Study on the Algorithm for Detection of Partial Discharge in GIS Using the Wavelet Transform

  • J.S. Kang;S.M. Yeo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.214-221
    • /
    • 2003
  • In view of the fact that gas insulated switchgear (GIS) is an important piece of equipment in a substation, it is highly desirable to continuously monitor the state of equipment by measuring the partial discharge (PD) activity in a GIS, as PD is a symptom of an insulation weakness/breakdown. However, since the PD signal is relatively weak and the external noise makes detection of the PD signal difficult, it therefore requires careful attention in its detection. In this paper, the algorithm for detection of PD in the GIS using the wavelet transform (WT) is proposed. The WT provides a direct quantitative measure of the spectral content and dynamic spectrum in the time-frequency domain. The most appropriate mother wavelet for this application is the Daubechies 4 (db4) wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, is very well suited to detecting high frequency signals of very short duration, such as those associated with the PD phenomenon. The proposed algorithm is based on utilizing the absolute sum value of coefficients, which are a combination of D1 (Detail 1) and D2 (Detail 2) in multiresolution signal decomposition (MSD) based on WT after noise elimination and normalization.

얼굴의 다중특징을 이용한 인증 시스템 구현 (A study on the implementation of identification system using facial multi-modal)

  • 정택준;문용선
    • 한국정보통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.777-782
    • /
    • 2002
  • 본 연구는 인식의 정확성을 향상시키고, 사용자의 편이성을 고려하여 단일생체 인식 대신에 얼굴의 다중특징을 이용하는 다중생체 인식방법을 제안한다. 얼굴의 특징은 다음과 같은 방법으로 찾는다. 얼굴의 특징은 웨이블렛 다중분해와 주성분 분석방법으로 계산하였고, 입술의 경우는 입술의 경계를 구한후 최소 자승법을 이용한 방정식의 계수를 구하였으며, 얼굴의 요소간 거리 비율에 의한 특징값을 구하여, 역전파 학습 알고리즘으로 분류하여 실험하였다. 실험을 통해 본 방법의 유효성을 확인하였다.

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.