• 제목/요약/키워드: Multiplicative complexity

검색결과 12건 처리시간 0.018초

GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기 (Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)))

  • 김태완;김기원
    • 대한임베디드공학회논문지
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

멀티플렉서를 이용한 $GF(2^m)$상의 승산기 ((Multiplexer-Based Away Multipliers over $GF(2^m))$)

  • 황종학;박승용;신부식;김흥수
    • 전자공학회논문지SC
    • /
    • 제37권4호
    • /
    • pp.35-41
    • /
    • 2000
  • 본 논문에서는 유한체 GF(2/sup m/)상에서 두 다항식의 승산 알고리즘을 제시하였다. 이 알고리즘은 반복적인 배열로 병렬 승산을 효과적으로 실현하며, 동일한 시간에 고속 동작을 실현한다. 제시된 승산기는 승산연산부와 mod연산부, 원시 기약다항식연산부로 구성하였다. 승산연산부는 멀티플렉서, X-OR게이트, AND게이트, MUX로 구성하였으며, mod연산부는 AND게이트, X-OR게이트로 구성하였다. 또한 본 논문에서 제시한 승산에는 효과적인 파이프형을 도입하였다. 도출된 모든 승산기는 고속 동작하며, 회로 복잡성이 감소한다. 셀들의 내부결선도는 VLSI 실현에 적합하도록 규칙적으로 구성되었다.

  • PDF

시스템 복잡도 개선을 위한 AOP 기반의 병렬 유한체 승산기 (Low System Complexity Parallel Multiplier for a Class of Finite Fields based on AOP)

  • 변기영;나기수;윤병희;최영희;한성일;김흥수
    • 한국통신학회논문지
    • /
    • 제29권3A호
    • /
    • pp.331-336
    • /
    • 2004
  • 본 논문에서는 보다 빠른 연산동작의 구현을 위해 시스템 복잡도를 개선한 새로운 GF(2$^{m}$ ) 승산기를 제안한다. m차 기약 AOP가 갖는 특성으로부터 승산 중 발생하는 모듈러 환원의 과정을 순환이동 특성으로 간략화 하였고, 이후 AND와 XOR 게이트들의 배열구조를 사용하여 승산을 이루도록 하였다. 본 논문에서 제안한 승산기는 m(m+1)개의 2-입력 AND게이트와 (m+1)$^2$개의 2-입력 XOR게이트만으로 구성되며 연산에 소요되는 지연시간은 Τ$_{A+}$〔lo $g_2$$^{m}$ 〕Τ$_{x}$ 이다. 제안된 승산기와 타 승산기를 비교하여 그 결과를 보였고, 비교 결과 회고구성 및 복잡도 개선에 우수한 특성을 가지며 VLSI 구현에 적합함을 확인하였다.다.

Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계 (The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP)

  • 변기영;황종학;김흥수
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.145-151
    • /
    • 2003
  • 본 논문에서는 고속의 연산동작과 낮은 회로 복잡도를 갖는 새로운 GF(2/sup m/)상의 승산기를 제안한다. 유한체 연산은 다항식 승산과 기약다항식을 적용한 모듈러 연산에 의해 전개되며, 본 논문에서는 이 두 과정을 분리하여 다루었다. 다항식 승산연산은 Permestzi의 기법을 토대로 전개하였고 기약다항식은 AOP로 하였다. 멀티플렉서를 사용하여 GF(2/sup m/)상의 승산회로를 구성하였고, 회로 복잡도와 지연시간을 타 논문과 비교하였다. 제안된 승산기는 낮은 회로 복잡도와 지연시간을 보이며, 회로의 구성이 정규성을 가지므로 VLSI 구현에 적합하다.

여분 기저를 이용한 멀티플렉서 기반의 유한체 곱셈기 (Multiplexer-Based Finite Field Multiplier Using Redundant Basis)

  • 김기원
    • 대한임베디드공학회논문지
    • /
    • 제14권6호
    • /
    • pp.313-319
    • /
    • 2019
  • Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.

보간법을 이용한 수치적분법의 평균 오차에 관한 연구 (On the Average Case Errors of Numerical Integration Rules using Interpolation)

  • 최성희;황석형;이정배;홍범일
    • 정보처리학회논문지A
    • /
    • 제11A권5호
    • /
    • pp.401-406
    • /
    • 2004
  • 이 논문에서는 정적분의 근사 값을 계산하는 여러 적분 문제 중에서 보간 법을 사용하는 수치적분법의 평균오차에 대해서 연구한다. 특히 가장 널리 쓰이고 있는 방법 중의 하나인 복합 Newton-Cotes 구적법의 평균오차에 대해서 연구한다. 주어진 구간을 등 간격으로 나누었을 때, 각 점에서의 함수 값을 information으로 사용할 경우, 복합 Newton-Cotes 구적법의 평균오차를 계산하였으며, 이 때 이 오차는 가장 최소임을 이 논문에서 증명한다.

An Improvement of UMP-BP Decoding Algorithm Using the Minimum Mean Square Error Linear Estimator

  • Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
    • ETRI Journal
    • /
    • 제26권5호
    • /
    • pp.432-436
    • /
    • 2004
  • In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.

  • PDF

척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석 (Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line)

  • 박은정
    • 한국과학교육학회지
    • /
    • 제34권4호
    • /
    • pp.335-347
    • /
    • 2014
  • 관찰과 측정을 기본으로 하는 과학의 교과에서 "크기(size)"와 그를 나타내는 "척도(scale)"는 물질의 물리적 속성과 과학적 현상을 이해하도록 돕는 중요한 개념이다. 또한, 사물의 수, 크기나 양을 어림잡거나 그것을 정확하게 표현하는 것은 수학에서 수의 개념 형성과 발달, 표현법의 습득, 나아가서는 연산에 관한 사고로의 발전과 관련되어있는 문제라고 볼 수 있어 "크기와 척도" 개념은 수학과 과학의 기본이며 동시에 두 교과를 연결하는 개념이다. 일반적으로 "크기와 척도"는 쉬운 개념이라 생각되지만, 실제 학생들은 물질의 크기를 제대로 이해하지 못하거나 척도로 나타내는 것을 어려워하는 것을 알 수 있다. 이는 단지 물질의 크기를 정확히 알지 못하는 정확성에 관한 오류로만 그치는 것이 아니라 종종 연관된 개념을 추론하거나 개념을 확장해 과학의 현상을 이해하는 과정에서의 어려움으로 이어진다. 이와 관련해 수와 연산에 관한 개념이해와 학습의 어려움에 관한 수학교육분야의 연구는 다양하게 진행되었지만, 과학교육분야에서의 연구는 많지 않았다. 본 연구에서는 "크기와 척도"에 관한 학생들의 사고를 더 잘 이해하고 과학 학습의 어려움에 관한 원인을 분석하기 위해 수학적 구조분석을 적용하였다. 수학교육에서 설명한 수 개념의 발달에 따른 사고유형(덧셈이전의 사고, 덧셈적 사고-additive reasoning, 곱셈적 사고-multiplicative reasoning)을 적용하여 7단계의 수학적 구조를 만들고 이를 이용하여 "크기와 척도"와 관련된 과제를 수행한 학생들의 인터뷰 데이터를 체계적으로 분석하였다. 수학적 구조를 바탕으로 한 개념 틀은 다양한 학생들의 사고를 분석하는 기준이 되었고, 또한 학생들이 겪는 개념이해의 어려움을 해석하는 도구가 되었다. 수 개념의 발달에 맞춘 수학적 사고구조를 적용한 분석은 학생들의 개념 유형의 구분을 명확히 하였고 설명이 모호했던 전환 단계(transition stage) 유형을 밝혀내어 수업에서 고려되어야 할 점들을 구체적으로 드러내었다. 이는 수학과 과학, 두 교과 간의 틈을 줄일 뿐 아니라 연결점을 찾아 학생들의 개념이해와 어려움의 원인을 분석하는데 폭넓은 시각을 제공한다는 점에서 최근 많은 관심을 받고 있는 STEM 혹은 수학과 과학의 융합 수업을 위한 소재로의 가능성을 제시해준다.

OFDM 적응 등화기 성능향상을 위한 새로운 고속 웨이블렛 기반 적응 알고리즘 및 VHDL 구현 (A New Fast Wavelet Transform Based Adaptive Algorithm for OFDM Adaptive Equalizer and its VHDL Implementation)

  • 정민수;이재균;이채욱
    • 한국통신학회논문지
    • /
    • 제31권11C호
    • /
    • pp.1107-1119
    • /
    • 2006
  • 주파수 비선택적 페이딩 채널에서의 데이터 전송은 승산성 왜곡으로부터 영향을 받는다 OFDM 방식에서도 채널의 영향에 의해 이러한 왜곡이 발생하게 되며 이를 보상하기 위해 등화기를 사용한다. 일반적으로 LMS 알고리즘을 사용한 적응 등화기의 경우 시변 채널을 거친 훈련신호의 고유치 분포가 커지게 된다. 고유값 분포가 커지면 통신시스템의 성능을 저하시키는 주요한 원인이 된다. 본 논문에서는 기존의 wavelet 변환을 고속으로 처리하는 고속화 알고리즘과 비교하여 적은 계산량으로 동일한 성능을 보이는 새로운 고속화 알고리즘을 제안한다 제안한 알고리즘을 OFDM 통신시스템의 적응등화기에 적용하였다. 기존의 알고리즘과 비교 및 분석한 결과 제안한 알고리즘의 성능이 우수한 것을 알 수 있었다. 제안한 알고리즘을 VHDL로 구현하였다.

Development of Mathematical Task Analytic Framework: Proactive and Reactive Features

  • Sheunghyun, Yeo;Jung, Colen;Na Young, Kwon;Hoyun, Cho;Jinho, Kim;Woong, Lim
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제25권4호
    • /
    • pp.285-309
    • /
    • 2022
  • A large body of previous studies investigated mathematical tasks by analyzing the design process prior to lessons or textbooks. While researchers have revealed the significant roles of mathematical tasks within written curricular, there has been a call for studies about how mathematical tasks are implemented or what is experienced and learned by students as enacted curriculum. This article proposes a mathematical task analytic framework based on a holistic definition of tasks encompassing both written tasks and the process of task enactment. We synthesized the features of the mathematical tasks and developed a task analytic framework with multiple dimensions: breadth, depth, bridging, openness, and interaction. We also applied the scoring rubric to analyze three multiplication tasks to illustrate the framework by its five dimensions. We illustrate how a series of tasks are analyzed through the framework when students are engaged in multiplicative thinking. The framework can provide important information about the qualities of planned tasks for mathematics instruction (proactive) and the qualities of implemented tasks during instruction (reactive). This framework will be beneficial for curriculum designers to design rich tasks with more careful consideration of how each feature of the tasks would be attained and for teachers to transform mathematical tasks with the provision of meaningful learning activities into implementation.