• Title/Summary/Keyword: Multiple-sink

Search Result 68, Processing Time 0.024 seconds

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

Local Update-based Multicasting Scheme for Mobile Sinks in Wireless Sensor Networks (무선 센서 망에서 이동싱크 지원을 위한 지역 수정 기반 멀티캐스팅 기법)

  • Lee, Jeong-Cheol;Park, Ho-Sung;Oh, Seung-Min;Jung, Ju-Hyun;Park, Soo-Chang;Lee, Eui-Sin;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Data multicasting from a source to multiple sinks in wireless sensor networks is used to achieve both reducing communication costs and energy efficiency. Almost all existing schemes for the multicasting might be effectively performed by optimal construction of a multicasting tree between a source and multiple stationary sinks. However, in practical sensor applications, sinks could move around on the wireless sensor networks for own missions, such as scouting of soldiers and saving lives of victims by firefighters. Unfortunately, the sink mobility causes frequent entire reconstruction of the multicasting tree and thus it leads to exhaustion of battery power of sensors. Hence, we propose an energy-efficient multicast protocol to support multiple mobile sinks by the local multicast tree reconstruction, called Local Update-based geographic Multicasting for Mobile sinks (LUMM) for wireless sensor networks. Our simulation results show that our scheme for mobile sinks is more efficient in terms of energy resource management than other exist works.

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Data-Dissemination Mechanism used on Multiple Virtual Grids in Wireless Sensor Networks (무선센서 네트워크에서의 다중 가상 그리드를 이용한 데이터 전송 메커니즘)

  • Jin, Min-Sook;Lee, Eui-Sin;Park, Soo-Chang;Kim, Sang-Ha
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.505-510
    • /
    • 2009
  • Sensor networks are composed of a great number of sensor nodes. Since all sensor nodes are energy-restricted and hard to recharge, it is very important.However, the energy consumption may significantly increase if mobile sources or sinks exist in sensor networks. The reason is that the routing information for mobile sources and sinks needs to be update frequently for efficientdata delivery. The routing algorithm supporting mobile sinks should consider not only continuous data delivery but also the energy consumption of sensor nodes. However, most of the existing research focuses on even energy consumption while the mobility of sinks and sources is rarely consider. In this paper, we propose an efficient routing protocol with multiple virtual grids to reduce energy consumption and improve packets delivery efficiency. Then this paper considers the mobility. Simulation results show that our algorithm can guarantee high data delivery ratio and lower average delivery delay, while consuming lower energy than existing routing protocols in sensor networks.

Designing a Path Management Method in Large-scale Multiple Sensor Networks (대규모 다중 센서 네트워크에서 효과적인 경로 관리 기법)

  • Lim, Yu-Jin;Park, Jae-Sung;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.3
    • /
    • pp.205-212
    • /
    • 2008
  • In the environment with multiple heterogeneous wireless sensor networks with a single point of sensed data collection or a gateway (GW), relay points (RPs) may be required for the energy efficient delivery of sensed data from static or mobile sinks to the GW. The optimal placement of RPs becomes an even more difficult problem if static sinks are dynamically added or the trajectory of mobile sinks can not be known in advance. In order to resolve this problem, we propose a mechanism to deploy RPs in a grid pattern and to use the tree-based relaying network for reducing the cost of the RP and for reducing the control overhead incurred by the route setup from sinks to the GW. For the performance evaluation of our proposed mechanism, we have carried out a numerical analysis on a single route setup from a sink to the GW and, for more general performance evaluations, ns-2 based simulations have been carried out. According to the performance evaluation results, our tree-based relaying network mechanism outperforms that based on AODV in terms of the data delivery time, the network service time and the control overhead.

Computation of structural intensity for plates with multiple cutouts

  • Khun, M.S.;Lee, H.P.;Lim, S.P.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.627-641
    • /
    • 2003
  • The structural intensity fields of rectangular plates with single cutout and multiple cutouts are studied. The main objective is to examine the effect of the presence of cutouts on the flow pattern of vibrational energy from the source to the sink on a rectangular plate. The computation of the structural intensity is carried out using the finite element method. The magnitude of energy flow is significantly larger at the edges on the plate near the cutout boundary parallel to the energy flow. The effects of cutouts with different shape and size at different positions on structural intensity of a rectangular plate are presented and discussed. A case study on a plate with two cutouts is also presented.

Performance Evaluation of Tree Routing in Large-Scale Wireless Sensor Networks (대규모 센서네트워크에서의 트리라우팅 성능평가)

  • Beom-Kyu Suh;Ki-Il Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Tree routing is one of appropriate routing schemes in wireless sensor network because the complexity of this approach is relatively low. But, congestion at a specific node may happen because a parent node toward a sink node is usually selected in one hop way, specially where large number of node are deployed. As feasible solution for this problem, multiple paths and sinks schemes can be applied. However, the performance of these schemes are not proved and analyzed yet. In this paper, we conduct diverse simulaton scenarios performance evaluation for these cases to identify the improvement and analyze the impact of schemes. The performance is measured in the aspects of packet transmission rate, throughput, and end-to-end delay as a function of amount of network traffic.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.