• Title/Summary/Keyword: Multiple-Linear-Regression

Search Result 1,766, Processing Time 0.033 seconds

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

Prediction of Cobb-angle for Monitoring System in Adolescent Girls with Idiopathic Scoliosis using Multiple Regression Analysis

  • Seo, Eun Ji;Choi, Ahnryul;Oh, Seung Eel;Park, Hyun Joon;Lee, Dong Jun;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Purpose: The purpose of this study was to select standing posture parameters that have a significant difference according to the severity of spinal deformity, and to develop a novel Cobb angle prediction model for adolescent girls with idiopathic scoliosis. Methods: Five normal adolescents girls with no history of musculoskeletal disorders, 13 mild scoliosis patients (Cobb angle: $10^{\circ}-25^{\circ}$), and 14 severe scoliosis patients (Cobb angle: $25^{\circ}-50^{\circ}$) participated in this study. Six infrared cameras (VICON) were used to acquire data and 35 standing parameters of scoliosis patients were extracted from previous studies. Using the ANOVA and post-hoc test, parameters that had significant differences were extracted. In addition, these standing posture parameters were utilized to develop a Cobb-angle prediction model through multiple regression analysis. Results: Twenty two of the parameters showed differences between at least two of the three groups and these parameters were used to develop the multi-linear regression model. This model showed a good agreement ($R^2$ = 0.92) between the predicted and the measured Cobb angle. Also, a blind study was performed using 5 random datasets that had not been used in the model and the errors were approximately $3.2{\pm}1.8$. Conclusions: In this study, we demonstrated the possibility of clinically predicting the Cobb angle using a non-invasive technique. Also, monitoring changes in patients with a progressive disease, such as scoliosis, will make possible to have determine the appropriate treatment and rehabilitation strategies without the need for radiation exposure.

A Study on the Walkability Scores in Jeonju City Using Multiple Regression Models (다중 회귀 모델을 이용한 전주시 보행 환경 점수 예측에 관한 연구)

  • Lee, KiChun;Nam, KwangWoo;Lee, ChangWoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • Attempts to interpret human perspectives using computer vision have been developed in various fields. In this paper, we propose a method for evaluating the walking environment through semantic segmentation results of images from road images. First, the Kakao Map API was used to collect road images, and four-way images were collected from about 50,000 points in JeonJu. 20% of the collected images build datasets through crowdsourcing-based paired comparisons, and train various regression models using paired comparison data. In order to derive the walkability score of the image data, the ranking score is calculated using the Trueskill algorithm, which is a ranking algorithm, and the walkability and analysis using various regression models are performed using the constructed data. Through this study, it is shown that the walkability of Jeonju can be evaluated and scores can be derived through the correlation between pixel distribution classification information rather than human vision.

Optimization for Concurrent Spare Part with Simulation and Multiple Regression (시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화)

  • Kim, Kyung-Rok;Yong, Hwa-Young;Kwon, Ki-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.79-88
    • /
    • 2012
  • Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.

A Prediction on the Pollution Level of Outdoor Insulator with Regression Analysis (회귀분석을 활용한 옥외 절연물의 오손도 예측)

  • 최남호;구경완;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The degree of contamination on outdoor insulator is ons of the most importance factor to determine the pollution level of outdoor insulation, and the sea salt is known as the most dangerous pollutant. As shown through the preceding study, the generation of salt pollutant and the pollution degree of outdoor insulator have a close relation with meteorological conditions, such as wind velocity, wind direction, precipitation and so fourth. So, in this paper, we made an investigation on the prediction method, a statistical estimation technique for equivalent salt deposit density of outdoor insulator with multiple linear regression analysis. From the results of the analysis, we proved the superiority of the prediction method in which the variables had a very close(about 0.9) correlation coefficient. And the results could be applied to establish the Pollution Prediction System for power utilities, and the system could provide an invaluable information for the design and maintenance of outdoor insulation system.

On the Robustness of $L_1$-estimator in Linear Regression Models

  • Bu-Yong Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.277-287
    • /
    • 1995
  • It is well kmown that the $L_1$-estimator is robust with respect to vertical outliers in regression data, even if it is susceptible to bad leverage points. This article is concerned with the robustness of the $L_1$-estimator. To investigate its robustness against vertical outliers we may find intervals for the value of the response variable within which the $L_1$-estimates do not shange. A procedure for constructing those intervals in multiple limear regression is illustrated in the sensitivity analysis context. And then vertical breakdown point of the $L_1$-estimator is defined on the basis of properties related to those intervals.

  • PDF

Estimating Solar Radiation for Arbitrary Areas Using Empirical Forecasting Models (경험적 예측모형을 통한 임의의 지점의 일사예측)

  • Jo, D.K.;Chun, I.S.;Lee, T.K.;Auh, C.M.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2000
  • It is necessary to estimate the regression coefficients in order to predict the monthly mean daily global radiation on a horizontal surface. Therefore many different equations have proposed to evaluate them for certain areas. In this work, a new correlation has been made to predict the solar radiation for any area over Korea by estimating the regression coefficients taking into account percentage of possible sunshine, and cloud cover. Particularly, the multiple linear regression model proposed shows reliable results for estimating the global radiation with average deviation of -1 to 3 % from the measured values.

  • PDF

Estimated Headwater Stream Temperature Using Environmental Factors with Seasonal Variations in a Forested Catchment (환경인자를 이용한 산지계류의 계절별 수온변화 예측)

  • Nam, Sooyoun;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2020
  • To estimate headwater stream temperature with seasonal variations, we analyzed precipitation, runoff and air temperature in experimental forest of Kangwon National University, Gangwon-do (2017~2018 years). The daily mean value of headwater stream temperature for spring was 6.9~17.7℃ and correlated with air temperature, that for summer and fall were 12.2~26.3℃ and 3.6~19.3℃, correlated with air temperature and runoff. Based on seasonal variations, we applied for stepwise multiple linear regression analyses to estimate headwater stream temperature with seasonal variations. The equations were headwater stream temperature(WT)spring=(0.553×Air temperature)+(0.086×Runoff)+4.145 (R2=0.505; p<0.01), WTsummer=(0.756×Air temperature)+(-0.072×Runoff)+2.670 (R2=0.510; p<0.01), and WTfall=(0.738×Air temperature)+(0.028×Precipitation)+2.660 (R2=0.844; p<0.01). The coefficient of determination (R2) was greater than when it was estimated by air temperature in all seasons and progressively increased from spring to winter. Therefore, we indicated difference on estimated magnitude of stepwise multiple linear regression, due to effects on headwater stream temperature of different environmental factors with seasonal variations. Furthermore, temporal factors with spatial characteristics (e.g., river versus headwater stream) could be recommended for estimating headwater stream temperature.

Multiple Linear Regression Model for Prediction of Summer Tropical Cyclone Genesis Frequency over the Western North Pacific (북서태평양 태풍발생빈도 예측을 위한 다중회귀모델 개발)

  • Choi, Ki-Seon;Cha, Yu-Mi;Chang, Ki-Ho;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.336-344
    • /
    • 2013
  • This study has developed a multiple linear regression model (MLRM) for the seasonal prediction of the summer tropical cyclone genesis frequency (TCGF) over the western North Pacific (WNP) using the four teleconnection patterns. These patterns are representative of the Siberian high Oscillation (SHO) in the East Asian continent, the North Pacific Oscillation (NPO) in the North Pacific, Antarctic oscillation (AAO) near Australia, and the circulation in the equatorial central Pacific during the boreal spring (April-May). This statistical model is verified by analyzing the differences hindcasted for the high and low TCGF years. The high TCGF years are characterized by the following anomalous features: four anomalous teleconnection patterns such as anticyclonic circulation (positive SHO phase) in the East Asian continent, pressure pattern like north-high and south-low in the North Pacific, and cyclonic circulation (positive AAO phase) near Australia, and cyclonic circulation in the Nino3.4 region were strengthened during the period from boreal spring to boreal summer. Thus, anomalous trade winds in the tropical western Pacific (TWP) were weakened by anomalous cyclonic circulations that located in the subtropical western Pacific (SWP) in both hemispheres. Consequently, this spatial distribution of anomalous pressure pattern suppressed convection in the TWP, strengthened convection in the SWP instead.

Impact of Physical Activity, Body Mass Index and Depression on the Health Related Quality of Life according to the Presence of Hypertension in the Elderly Women (여성노인의 고혈압 유무에 따른 신체활동, 체질량 지수 및 우울이 건강관련 삶의 질에 미치는 영향)

  • Kim, Ae-Sil;Bea, Han-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.543-553
    • /
    • 2020
  • This study analyzed secondary data using the results of the 7th Korea National Health and Nutrition Survey in 2018. The aim of this study was to identify and compare the effects of physical activity, body mass index, and depression on the health-related quality of life of elderly women. Specifically, the sample consisted of 550 women with hypertension and 375 women without hypertension. The data were analyzed using descriptive statistics, chi-square test, t-test, and multiple linear regression with the IBM SPSS/WIN 22.0 program. Multiple linear regression analysis showed that age, education, physical activity, body mass index, and depression accounted for 26.9% of the health-related quality of life (HRQOL) in the hypertension group (F=14.30, p<.001), followed by physical activity (t=3.02, p=.003), body mass index (t=-3.12, p=.002), and depression (t=-7.69, p<.001). Education and depression accounted for 31.7% of the QoL in the non-hypertension group (F=4.42, p<.001), followed by depression (t=-5.53, p<.001). Based on these results, a physical activity intervention program will be needed to reduce depression and obesity in older women. Moreover, further research comparing the characteristics of other specific physical activities in elderly women with hypertension is recommended.