• 제목/요약/키워드: Multiple-Linear-Regression

검색결과 1,766건 처리시간 0.033초

커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용 (Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction)

  • 홍주표;고태영
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.594-609
    • /
    • 2023
  • TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.

다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구 (A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression)

  • 황윤정;안중배
    • 한국지구과학회지
    • /
    • 제28권2호
    • /
    • pp.214-226
    • /
    • 2007
  • 강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역$(110^{\circ}E-145^{\circ}E,\;25^{\circ}N-55^{\circ}N)$의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.

회귀 모델을 활용한 철강 기업의 에너지 소비 예측 (Forecasting Energy Consumption of Steel Industry Using Regression Model)

  • Sung-Ho KANG;Hyun-Ki KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권2호
    • /
    • pp.21-25
    • /
    • 2023
  • The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.

단기수요예측 알고리즘 (An Algorithm of Short-Term Load Forecasting)

  • 송경빈;하성관
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

QSPR Study of the Absorption Maxima of Azobenzene Dyes

  • Xu, Jie;Wang, Lei;Liu, Li;Bai, Zikui;Wang, Luoxin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3865-3872
    • /
    • 2011
  • A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima of azobenzene dyes. The entire set of 191 azobenzenes was divided into a training set of 150 azobenzenes and a test set of 41 azobenzenes according to Kennard and Stones algorithm. A seven-descriptor model, with squared correlation coefficient ($R^2$) of 0.8755 and standard error of estimation (s) of 14.476, was developed by applying stepwise multiple linear regression (MLR) analysis on the training set. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-many-out crossvalidation procedure, randomization tests, and validation through the test set.

분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발 (Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • 제23권1호
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구 (Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool)

  • 황석현;이진현;양승한
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

청소년 시기별 자아존중감과 스트레스 간의 관련성 비교 (Relationship between Self-Esteem and Stress among Adolescents)

  • 이주열
    • 한국학교ㆍ지역보건교육학회지
    • /
    • 제17권3호
    • /
    • pp.49-59
    • /
    • 2016
  • Objectives: This study was conducted to investigate the relationship between self-esteem and stress among adolescents. Methods: The subjects of this study were 1,025 from elementary, middle and high school students in Dangjin city. Data were measured using self-esteem scale and brief encounter psychosocial instrument. The data were analyzed frequencies, t-test, ANOVA, Pearson's correlation coefficient and multiple linear regression analysis using the SPSS 12.0 program. Results: Self-esteem was correlated with stress negatively among adolescents. In multiple linear regression analysis, self-esteem had a statistically significant negative effect on stress. Affecting factors of the self-esteem in all schools were grades, economic status and relationship with parents. Conclusion: The results of this study help to provide a basis for the development of a self-esteem management program to alleviate the stress for adolescents. The program of human relationship should be developed and provided to improve the self-esteem.

A Hybrid Algorithm for Identifying Multiple Outlers in Linear Regression

  • Kim, Bu-yong;Kim, Hee-young
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.291-304
    • /
    • 2002
  • This article is concerned with an effective algorithm for the identification of multiple outliers in linear regression. It proposes a hybrid algorithm which employs the least median of squares estimator, instead of the least squares estimator, to construct an Initial clean subset in the stepwise forward search scheme. The performance of the proposed algorithm is evaluated and compared with the existing competitor via an extensive Monte Carlo simulation. The algorithm appears to be superior to the competitor for the most of scenarios explored in the simulation study. Particularly it copes with the masking problem quite well. In addition, the orthogonal decomposition and Its updating techniques are considered to improve the computational efficiency and numerical stability of the algorithm.