• Title/Summary/Keyword: Multiple robots

Search Result 274, Processing Time 0.024 seconds

Development of a Simulator for Evolutionary Robots using Multi-robot Cooperation (다수 로봇 협업을 이용한 진화 로봇 시뮬레이터의 개발)

  • Son, Yun-Sik;Park, Ji-Woo;Jung, Jin-Woo;Oh, Se-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.90-96
    • /
    • 2009
  • In the original model-based paradigm in the field of motion planning of robots, robots had to play the focal role of considering all situations under which they made decisions and operate. Such paradigm makes it difficult to respond efficiently to the dynamically shifting environment such as disaster area. In order to handle such a situation that may be changed dynamically, a technology that allows a dynamic execution of data transmission and physical/network connection between multiple robots based on scenarios is required. In this paper, we deal with evolutionary robots that adapt to any given environment and execute scenarios, specially focused on the development of a simulator to test the evolutionary process of cooperated multiple robots.

  • PDF

A Recognition System for Multiple Mobile Robots Using RFID System in Smart Space (스마트 스페이스에서 RFID 시스템을 이용한 다수 이동로봇 인식 시스템)

  • Tak, Myung-Hwan;Yeom, Dong-Hae;Cho, Young-Jo;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2103-2107
    • /
    • 2010
  • This paper deals with the recognition of multiple mobile robots equipped with RFID tag. In the case that the number of robots recognized by each RFID reader is larger than that of allocated slots, the clashing recognition occurs. And, in the case that the total number of robots recognized by all RFID reader is larger than that of real robots, the repetitious recognition occurs. We employ the dynamic frame slot allocation by using the ALOHA algorithm to prevent the clashing recognition and estimate the number of robots by using the received signal strength indication to prevent the repetitious recognition. The numerical experiment shows the reliability and the efficiency of the proposed method.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Formation of Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.203-209
    • /
    • 2001
  • This paper develops a control method for some generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors that cannot accurately measure absolute distances and directions of objects. That is, all the sensors have limitation on the range, and uncertainty in the values. Therefore, more robust and reliable control logic is proposed and implemented. The logic is developed considering generic situations and increasing the number of robots participating in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogeneous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The experiment results are analyzed quantitatively by using the data of the relative distances and angles between the robots. And the trajectories of the robots during the formation are also evaluated. The developed control approach is demonstrated with experiments to be successful and efficient for the formation of autonomous mobile robots.

  • PDF

Assembly Sequence Planning for Multiple Robots Along a Conveyer Line (다수의 로봇을 이용한 컨베어상의 조립순서 계획)

  • 박장현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.111-117
    • /
    • 1998
  • In order to increase productivity of an assembly system composed of multiple robots along a conveyer line, an efficient sequence planning is necessary because the assembly time is dependent upon the assembly sequence. In this paper, a two-robot assembly system is considered in which two robots operate simultaneously and transfer parts from the part feeders to the workpiece on the conveyer one by one. In this case, the distance from the feeder to the workpiece varies with time because the workpiece moves at a constant speed on the conveyer. Hence, the sequence programming is not a trivial problem. Also, the two robots may interfere with each other kinematically and dynamically due to the simultaneous operation, so the sequence should be programmed to avoid the interferences. In this paper, the task sequence optimization problem is formulated and is solved by employing the simulated annealing which has been shown to be effective for solving large combinatorial optimizations.

  • PDF

Acceleration Ellipsoid of Multiple Cooperating Robots with Friction Contact (마찰력을 고려한 로봇의 가속도 타원 해석)

  • 이원희
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.887-898
    • /
    • 2004
  • In this paper a mathematical framework fur deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

On navigation strategy of multiple autonomous mobile robots in a specified domain

  • Lee, Seog-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1071-1076
    • /
    • 1990
  • This paper proposes a navigation strategy of multiple autonomous mobile robots with communication within a specified space. Assuming that each robot has complete detectability with finite range, simple navigation strategy is derived by introducing repulsive forces between robots and attractive force between a robot and its goal point analogous to those between electric charges. When a robot is close to its goal point, a pseudo-domain based on the distance between the closest point of the domain boundary and the goal point is proposed to enhance its convergence to the goal state. This paper concludes with the results of computer simulation studies on the dynamic behavior of multiple interacting robots with the proposed navigation strategy.

  • PDF

Formation-Keeping of Multiple Robots using Chained-Poles (연결극점을 이용한 다중로봇의 대형유지)

  • Kwak, Jae-Hyuk;Kang, Hyun-Deok;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.218-224
    • /
    • 2009
  • We propose a formation-keeping and changing methods for outdoor multiple mobile robots in chained form. Our proposed method is designed to maintain the follower to its desired distance and orientation with respect to the pole using the concept of virtual force such as potential field. The client robots use a behavior-based control to perform kinematic control to keep formation under the centralized system in our software framework. The relationship of each poles that is expressed by set of distance and angle is the description of the formation type and the type converting is performed using this set. In addition, we also examine the stability and capability in the simulation and experiments with real robots.

  • PDF

Cooperative Multiple Robot Localization utilizing Correlation between GPS Data Errors (GPS 데이터 오차 간의 상관 관계를 활용한 군집 로봇의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • It is essential to estimating positions of multiple robots in order to perform cooperative task in common workspace. Accordingly, we propose a new approach of cooperative localization for multiple robots utilizing correlation among GPS errors in common workspace. Assuming that GPS data of individual robot are correlated strongly as the distance among robots are close, it is confirmed that the proposed method provides improved localization accuracy. In addition, we define two operational parameters to apply proposed method in multiple robot system. With mentioned two parameters, we present a practical solution to accumulated position error in traveling long distance.

  • PDF

Dynamics of Interacting Multiple Autonomous Mobile Robots (복수의 자율 이동 로보트 상호간의 동역학)

  • Lee, Suck-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.308-315
    • /
    • 1991
  • This paper deals with the global dynamic behavior of multiple autonomous mobile robots with suggested navigation strategies within unbounded and bounded spatial domain. We derive some navigation strategies of robots wirh complete detectability with finite range to reach their goal states without collision which is motivated by Coulomb's law regarding repulsive and attractive forces between electrical charges. An analysis of the dynamic behavior of the interacting robots with the suggested navigation strategies under the assumption that communication is not permissible between robots is made and some examples are illustrated by computer simulation. The convergence of robot motions to their goal states under certain conditions is established by considering their global dynamic behavior even when some objects are close to their goal points.

  • PDF