• 제목/요약/키워드: Multiple response model

검색결과 470건 처리시간 0.03초

벼의 저온 박층건조모델 (Low Temperature Thin Layer Drying Model of Rough Rice)

  • 김훈;금동혁;김의웅
    • Journal of Biosystems Engineering
    • /
    • 제29권6호
    • /
    • pp.495-500
    • /
    • 2004
  • This study was performed to develop thin layer drying equations for low temperature. Thin layer drying tests of short grain rough rice were conducted at three low temperature levels of 15, 25, $35^{\circ}C$ and two relative humidity levels of 30, $50\%$, respectively. The measured moisture ratios were fitted to the selected four drying models (Page, Thompson, Simplified diffusion and Lewis model) using stepwise multiple regression analysis. The overall drying rate increased as the drying air temperature was increased and as relative humidity was decreased, but the effect of temperature increase was dominant. Half response time (Moisture ratio=0.5) of drying was affected by both drying temperature and relative humidity at drying temperature of below $25^{\circ}C$, but at $35^{\circ}C$ was mainly affected by drying temperature. The results of comparing coefficients of determination and root mean square error of moisture ratio for low drying models showed that Page model was found to fit adequately to all drying test data.

하이브리드 하드디스크에서 AHP를 적용한 블록 교체 기법 (A Block Replacement Scheme using Analytic Hierarchy Process in Hybrid HDD)

  • 김정원
    • 한국산업정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.45-52
    • /
    • 2015
  • 하이브리드 하드디스크는 저전력이면서 마그네틱 하드디스크에 비해 읽기 성능이 우수하다. 이 디스크의 플래시메모리에는 지역성이 높은 블록이 저장되므로 효율적인 블록 교체 기법이 필요하다. 블록 교체에는 크기, 지역성, 빈도 등 다양한 요인에 의해 결정되므로 일종의 다중 기준 결정 모델로 정의될 수 있다. 이 문제를 해결하기 위해 본 연구는 AHP (Analytic Hierarchy Process) 모델을 적용하여 효율적인 블록 교체 기법을 제시한다. 실험의 효율성을 검증하기 위하여 철저한 시뮬레이션을 수행한 결과 일반응용 프로그램의 응답성뿐만 아니라 부트 시간이 단축됨을 확인하였다.

고등학생의 스마트폰 중독이 충동성, 스트레스, 자기효능감, 자기통제력에 미치는 영향 (The Effects of High School Students' Smart Phone Addiction on Impulsivity, Stress, Self-efficacy, and Self-control)

  • 오주
    • 수산해양교육연구
    • /
    • 제27권4호
    • /
    • pp.998-1012
    • /
    • 2015
  • This study is smartphone addiction impulsiveness, stress, self-efficacy, and examine any changes to appear self-control. This study is a response to the results obtained for 310 people targeting high school in Pusan, the second grade students. For the analysis of the collected data by using the SPSS 22.0 program was the analysis of the T-test, ANOVA, Multiple Regression. The major findings of this study can be summed up as follows: first, smart phone addiction has significant difference in impulsivity, stress, self-efficacy, and self-control. Second, sex is found to be significant in impulsivity, stress, self-efficacy, and self-control. Third, grades are significant in impulsivity, self-efficacy, and self-control. Fourth, the model for impulsivity indicates 4% of explanatory power, which is significant. Fifth, explanatory power for stress is 4%, which is significant. Sixth, the model for self-efficacy shows 14% of explanatory power, which is significant. Meanwhile, smart phone addiction, sex, and grades have no significant effects on self-efficacy. Seventh, the model for self-control indicates 20% of explanatory power, which is significant.

벼의 원적외선 건조특성 (I) -박층건조방정식- (Far-Infrared Ray Drying Characteristics of Rough Rice (I) -Thin layer drying equation-)

  • 금동혁;김훈;홍상진
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.45-50
    • /
    • 2002
  • This study was performed to develop thin layer drying equations fur short grain rough rice using far-infrared ray. Thin layer drying tests was conducted at four far-infrared ray temperature levels of 30, 40, 50, 60$^{\circ}C$ and two initial moisture content levels of 20.7, 26.2%(w.b.). The measured moisture ratios were fitted to Lewis and Page drying models by stepwise multiple regression analysis. Half response time of drying was affected by both drying temperature and initial moisture content at drying temperature of below 40$^{\circ}C$, but at above 40$^{\circ}C$ was mainly affected by drying temperature. Experimental constant(k) in Lewis model was a function of drying temperature, but K and N in Page model were function of drying temperature and initial moisture content. Moisture ratios predicted by two drying models agreed well with experimental values. But in the actual range of drying temperature above 30$^{\circ}C$ Page model was more suitable for predicting of drying rates.

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • 농업과학연구
    • /
    • 제48권2호
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구 (A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis)

  • 김수겸;우승철;김웅일;박상기;이기형
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

An Asynchronous Burst Time Plan Generation Method for Broadband Satellite Multimedia System

  • Feng, Shaodong;Wang, Fan;Lin, Yuan;Gou, Liang;Li, Guangxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권2호
    • /
    • pp.386-404
    • /
    • 2013
  • In broadband satellite multimedia (BSM) system, burst time plan (BTP) is always periodically generated. We find that this method can have a great effect on the system response ability to bandwidth requests. A general analysis model of BTP generation method is given. An optimized BTP generation (O-BTPG) method is presented by deducing the optimal bandwidth allocation period (BAP) and bandwidth allocation latency (BAL) without considering the signaling overhead caused by BTP. Then a novel asynchronous BTP generation (A-BTPG) method in which the BTP is generated asynchronously according to the traffic load from users' bandwidth requests is proposed. Simulation results show that A-BTPG can flexibly realize a trade-off between the system response ability and BTP signaling overhead. What's more, it can be widely used in various regenerative onboard switching BSM systems.

유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정 (Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms)

  • 허석;곽문규
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF