• Title/Summary/Keyword: Multiple clustering

Search Result 358, Processing Time 0.028 seconds

코퍼스 기반 음성합성기의 데이터베이스 축소 방법 (Pruning Methodology for Reducing the Size of Speech DB for Corpus-based TTS Systems)

  • 최승호;엄기완;강상기;김진영
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.703-710
    • /
    • 2003
  • 코퍼스 기반 음성합성방식은 그 합성음의 자연성이 매우 우수하여 널리 사용되고 있으나 대용량의 데이터베이스 (DB)를 사용하기 때문에 그 적용분야가 매우 제한적이다. 본 연구에서는 이러한 코퍼스 기반 음성합성기의 대용량 DB 문제를 해결하기 위한 방안으로서 DB 축소 방법 대한 알고리듬을 제안하고 평가하였다. 본 논문에서는 DB 축소 알고리듬으로서 세 가지 방법을 제안하였는데, 첫 번째는 Modified K-means 군집화를 이용한 DB 축소 알고리듬이고 다음은 적절한 문장 셋을 정의하고 이 문장 셋을 합성할 때 사용된 단위들을 이용하는 방법이다. 마지막으로는 대용량 문장 셋을 정의하고 해당 문장을 음성합성하고, 음편들의 사용 빈도수를 고려하여 군집화를 하는 것이다. 세 가지 방법을 이용하여 합성 DB를 유사한 크기로 축소하였을 때, 대용량 문장 셋과 빈도를 고려한 세 번째 방법이 가장 우수한 음질을 보였다. 또한 마지막 방법은 합성음의 음질은 저하시키지 않으면서 합성 DB만을 감소시키는 성능을 보여, 제안된 방법의 타당함을 입증할 수 있었다.

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • 제5권2호
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

수요응답형 대중교통체계를 위한 클러스터링 기반의 다중차량 경로탐색 방법론 연구 (Study on Multi-vehicle Routing Problem Using Clustering Method for Demand Responsive Transit)

  • 김지후;김정윤;여화수
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.82-96
    • /
    • 2020
  • 수요응답형 대중교통체계 시스템은 사용자의 요청에 따라 서비스 차량의 경로와 스케줄을 설정하는 유동적인 대중교통 서비스이다. 도시 지역에서 대중교통 시스템의 중요성이 증가함에 따라, 수요응답형 대중교통체계를 위한 안정적이고 빠른 경로탐색 방법의 개발 또한 다양하게 연구되고 있다. 본 연구에서는 빠르고 효율적인 다중차량경로 탐색을 위해, 수요 기종점들의 클러스터링 기술을 활용한 종점수요 우선탐색의 휴리스틱 방법이 제안되었다. 제안된 방법은 기종점 수요 분포가 무작위인 경우, 집중된 경우와 방향성을 가지는 경우에 대하여 테스트되었다. 제안된 알고리즘은 수요밀도의 증가로 인한 서비스 비율의 감소를 저감시키며, 계산 속도가 비교적 빠른 장점을 보인다. 또한, 다른 클러스터링 기반 알고리즘에 비해 수요밀도 증가에 따른 서비스 비율 감소율이 낮고, 차량 용량의 활용성이 개선된 반면, 차량 운행경로 길이의 증가로 승객의 차량 탑승시간은 상대적으로 증가하는 특성을 보인다.

그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출 (Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering)

  • 우하용;김경환
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 여러 대의 카메라를 이용한 감시 시스템이 정확하고 효율적으로 동작하기 위하여 카메라 시야 간의 연결 관계를 아는 것이 필수적이다. 카메라들의 연결 관계를 파악하기 위하여 카메라 시야 내의 출입 영역을 검출하는 일이 선행되어야 한다. 본 논문에서는 카메라 시야에서 객체의 등장 및 퇴장으로부터 얻은 데이터에 그래프 이론 기반의 클러스터링(clustering)을 적용하여 시야 내의 출입 영역을 검출하는 방법을 제안한다. 데이터 포인트들 사이의 관계를 조사하여 최소신장트리를 구성하고, 트리의 에지들 중 일관성을 갖지 않는 것들을 삭제하여 well-formed 클러스터를 얻는다. 본 논문에서는 클러스터의 형태를 설명하는 두 가지 특징을 정의하고 이를 클러스터의 분할 조건으로 사용하였다. 실험결과를 통하여 데이터 포인트의 분포가 조밀하지 않은 경우 expectation maximization(EM)에 기반을 둔 방법에 비하여 치안하는 방법이 보다 효과적으로 클러스터링을 수행함을 확인하였다. 또한 EM 기반 방법들에 비하여 안정적인 결과를 얻기 위해 필요한 데이터 포인트의 개수가 적으므로 출입영역에 대한 학습시간을 단축할 수 있다.

Association between hemoglobin glycation index and cardiometabolic risk factors in Korean pediatric nondiabetic population

  • Lee, Bora;Heo, You Jung;Lee, Young Ah;Lee, Jieun;Kim, Jae Hyun;Lee, Seong Yong;Shin, Choong Ho;Yang, Sei Won
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • 제23권4호
    • /
    • pp.196-203
    • /
    • 2018
  • Purpose: The hemoglobin glycation index (HGI) represents the degree of nonenzymatic glycation and has been positively associated with cardiometabolic risk factors (CMRFs) and cardiovascular disease in adults. This study aimed to investigate the association between HGI, components of metabolic syndrome (MS), and alanine aminotransferase (ALT) in a pediatric nondiabetic population. Methods: Data from 3,885 subjects aged 10-18 years from the Korea National Health and Nutrition Examination Survey (2011-2016) were included. HGI was defined as subtraction of predicted glycated hemoglobin ($HbA1_c$) from measured $HbA1_c$. Participants were divided into 3 groups according to HGI tertile. Components of MS (abdominal obesity, fasting glucose, triglycerides, high-density lipoprotein cholesterol, and blood pressure), and proportion of MS, CMRF clustering (${\geq}2$ of MS components), and elevated ALT were compared among the groups. Results: Body mass index (BMI) z-score, obesity, total cholesterol, ALT, abdominal obesity, elevated triglycerides, and CMRF clustering showed increasing HGI trends from lower-to-higher tertiles. Multiple logistic regression analysis showed the upper HGI tertile was associated with elevated triglycerides (odds ratio, 1.65; 95% confidence interval, 1.18-2.30). Multiple linear regression analysis showed HGI level was significantly associated with BMI z-score, $HbA1_c$, triglycerides, and ALT. When stratified by sex, age group, and BMI category, overweight/obese subjects showed linear HGI trends for presence of CMRF clustering and ALT elevation. Conclusion: HGI was associated with CMRFs in a Korean pediatric population. High HGI might be an independent risk factor for CMRF clustering and ALT elevation in overweight/obese youth. Further studies are required to establish the clinical relevance of HGI for cardiometabolic health in youth.

적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법 (A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.529-535
    • /
    • 2014
  • 본 논문에서는 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 클러스터링 방법에 multiple Gaussian kernels을 기반으로 한 possibilistic fuzzy C-means multiple kernels(PFCM-MK) 알고리즘을 결합하여 적응적인 하이브리드 클러스터링 방법인 multiple kernels interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK) 방법을 제안 하였다. 일반적으로 possibilistic fuzzy C-means(PFCM) 알고리즘은 fuzzy C-means(FCM) 알고리즘의 단점인 노이즈 민감성 및 특이점 문제와 알고리즘 초기 클러스터의 Prototype에 따라 위치가 겹치는 문제를 해결하기 위해 제안 되었다. 하지만 이 방법 역시 퍼지화 파라미터 값에 따라 위와 같은 문제를 여전히 가지고 있기 때문에 이와 같은 문제를 보완하기 위해 interval type-2 퍼지 접근 방법을 이용 하는 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 알고리즘을 제안 하였다. 또한 multiple kernels 함수를 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 알고리즘에 적용하여 분류하기 복잡한 형태의 데이터와 노이즈가 있는 데이터에 대하여 보다 정확하고, 향상된 클러스터링을 수행할 수 있다.

쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법 (A method for localization of multiple drones using the acoustic characteristic of the quadcopter)

  • 정인지;조완호;이정권
    • 한국음향학회지
    • /
    • 제43권3호
    • /
    • pp.351-360
    • /
    • 2024
  • 드론 기술의 발전으로 인해서 최근 다양한 분야에서 무인항공기가 활용되고 있으며, 이와 더불어 드론 사용 증가에 따르는 여러 가지 문제들이 발생하고 있다. 드론은 크기가 매우 작아서 레이더나 광학장비로 탐지하기 어려운 문제가 있으며, 따라서 최근에는 음향학적인 방법을 이용한 추적 방식이 적용되고 있다. 본 논문은 쿼드콥터 드론의 음향 특성을 활용하여 다수의 드론 위치를 추정하는 방법을 다루었다. 드론의 종류와 드론의 움직임 상태에 따라 각 로터로부터 유발되는 음향 특성이 구별되므로, 블레이드 통과 주파수 및 이에 대한 고조파 음원에 대한 위치 추정을 수행한 결과를 공간 군집화하여 드론의 음원을 재현하였다. 재현된 음원은, 위치 추정 알고리즘을 적용하여 최종적으로 다수의 드론 음원에 대한 위치를 결정하는데 사용된다. 쿼드콥터 드론의 음향 특성을 분석하기 위한 실험을 수행하였으며, 이때 측정한 음향 신호를 기반으로 서로 다른 세 종류의 드론에 대한 음원 위치 추정 시뮬레이션을 수행하였다. 이를 통해 드론의 음향 특성을 활용하여 다수의 드론 위치를 추정할 수 있음을 확인하였고, 분리된 드론 음원의 명확성과 음원 추정 알고리즘이 다수의 드론 위치 추정 정확도에 영향을 주는 것을 관찰하였다.

K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피 (K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs)

  • 김혜지;강혁;이성봉;김형석;이동진
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.427-433
    • /
    • 2022
  • 무인항공기의 충돌 회피 기술은 장애물에 대한 탐지 기술과 충돌 여부 판단 및 회피 기술이 요구된다. 본 논문은 공선상에 존재하는 다중 정적 장애물에 대한 무인항공기의 충돌 회피를 수행하기 위하여, LiDAR를 활용한 장애물 탐지 알고리즘과 최근접점 기반의 충돌 인식 및 회피 알고리즘을 제안한다. 장애물 탐지를 수행하기 위하여 LiDAR의 측정 데이터 중 지면을 제거하는 전처리를 수행하고, K-평균 군집화 알고리즘을 활용하여 전처리된 데이터에서 장애물을 탐지 및 분류한다. 또한, 상대 항법을 통해 탐지한 다중 장애물의 절대 위치를 추정하며, 저주파 통과 필터를 활용하여 추정 위치를 보정한다. 탐지한 다중 정적 장애물과의 충돌 회피를 수행하기 위해 최근접점 기반의 충돌 인식 및 회피 알고리즘을 활용한다. 각 장애물 간의 거리를 활용하여 회피해야 하는 장애물 정보를 갱신하고, 갱신된 장애물 정보를 통해 충돌 인식 및 회피를 수행한다. 마지막으로 Gazebo 시뮬레이션 환경에서의 장애물 위치 추정, 충돌 인식 및 회피 결과 분석을 통해, 충돌 회피가 정상적으로 수행되는 것을 검증하였다.

명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할 (Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification)

  • 김민정;이정민;김명희
    • 정보처리학회논문지A
    • /
    • 제13A권5호
    • /
    • pp.465-472
    • /
    • 2006
  • 최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영상을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다. 본 연구에스는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링(coherence enhancing diffusiion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가긍하고 사용자 수동후 처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.