This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.
This paper presents a development result for image processed tracking system of multiple moving objects based on Kalman filter and a simple window tracking method. The proposed algorithm of foreground detection and background adaptation (FDBA) is composed of three modules: a block checking module(BCM), an object movement prediction module(OMPM), and an adaptive background estimation module (ABEM). The BCM is processed for checking the existence of objects. To speed up the image processing time and to precisely track multiple objects under the object's mergence, a concept of a simple window tracking method is adopted in the OMPM. The ABEM separates the foreground from the background in the reset simple tracking window in the OMPM. It is shown through experimental results that the proposed FDBA algorithm is robustly adaptable to the background variation in a short processing time. Furthermore, it is shown that the proposed method can solve the problems of mergence, cross and split that are brought up in the case of tracking multiple moving objects.
본 논문은 모델기반 다중이동물체 추적을 위한 모델생성 알고리즘을 제안하였다. 제안한 알고리즘은 배경영상에 이동물체가 초기 진입했을 때의 초기모델생성 단계와 이동물체 추적 단계에서의 모델 갱신 단계로 구분하였다. 초기모델생성 단계에서는 차영상과 클러스터링 기법을 이용하여 분할된 분할영상과 현재프레임 영상에 대한 윤곽선 영상과의 로직 AND 연산을 수행하여 초기모델을 생성하였다. 모델갱신 단계에서는 하우스돌프 거리(Hausdorff Distance)와 2D-Logarithmic 탐색 알고리즘을 이용하여 추적중인 이동물체의 형태변화에 적응할 수 있도록 매 프레임 마다 새로운 모델을 갱신하였다. 실험은 도로에서 주행하는 자동차를 대상으로 도_의 실험을 수행하였다. 그 결과 도로에서 주행하는 자동차의 진입방향과 추적 대상 수가 불규칙한 경우에도 모델생성이 98% 이상 이루어짐을 알 수 있었다.
영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.
The paper introduces a development result for displacement measurement system of multiple moving objects based on image processing technique. The image processing method adopts inertia moment theory for obtaining the centroid of the targets and basic processing algorithms of gray, binary, closing, labeling and etc. To get precise displacement measurement in spite of multiple moving targets, a CCD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in directions of X -Y coordinates. The precise alignment device is pan /tilt of X - Y type and the pan/tilt is controlled by DC servomotors which are driven by 80c196kc microprocessor based controller. The centers of the fiducial marks are obtained by a inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are stored in the database system in a real time. By using database system and internet, displacement data can be confirmed at a great distance and analyzed. The developed system shows the effectiveness such that it realizes the precision about 0.12mm in the position control of X -Y coordinates.
Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
International Journal of Fuzzy Logic and Intelligent Systems
/
제11권2호
/
pp.118-123
/
2011
Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권9호
/
pp.3196-3210
/
2014
This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.
이동체는 시간의 흐름에 따라 공간적인 위치, 모양, 크기등과 같은 다양한 속성들이 변화하며, 이러한 이동체는 시간과 공간적인 특성을 모두 가지고 있는 비디오 데이터의 중요한 특징정보에 해당한다. 본 논문에서는 멀티미디어 데이터 중에서도 특히 비디오 데이터내의 이동체의 궤적 정보를 이용하여 보다 효율적인 비디오 데이터 자체의 내용을 기반으로 하는 멀티미디어 정보검색 시스템인 ECoMOT(Efficient Content-based Multimedia Information Retrieval System using Moving Objects' Trajectories)을 제안한다. ECoMOT 시스템은 비디오 데이터내의 이동체의 궤적을 토대로 내용 기반 검색을 지원하기 위해 다음과 같은 기법을 포함한다. : (1) 다수의 이동체들의 궤적 정보를 모델링하기 위한 다중 궤적(multiple trajectory) 모델링 기법; (2) 다수의 이동체들로 구성된 주어진 두 궤적들 간의 유사도를 측정하여 유사성이 높은 순으로 검색할 수 있는 다중 궤적 기반 유사 궤적 검색 기법; (3) 대용량 궤적 데이터에서 원하는 궤적을 빠르게 검색할 수 있는 중첩 시그니쳐-기반 궤적 색인 기법(superimposed signature-based trajectory indexing technique); (4) 그래픽 인터페이스를 이용한 편리한 이동체의 궤적 추출 과 질의 생성 및 검색 인터페이스.
Most real image sequences contain multiple moving objects or multiple motions. In this paper, we segmented the moving objects with optical flow. Motion estimation by this method can estimate and compress the image sequences better than other methods such as block matching method. And, especially, we can make new image sequences by synthesizing the segmented objects. But, it takes too much time for motion estimation. And, it is not easy for a hardware implementation.
In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.