• 제목/요약/키워드: Multiple Moving Objects

검색결과 106건 처리시간 0.03초

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Image Processed Tracking System of Multiple Moving Objects Based on Kalman Filter

  • Kim, Sang-Bong;Kim, Dong-Kyu;Kim, Hak-Kyeong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.427-435
    • /
    • 2002
  • This paper presents a development result for image processed tracking system of multiple moving objects based on Kalman filter and a simple window tracking method. The proposed algorithm of foreground detection and background adaptation (FDBA) is composed of three modules: a block checking module(BCM), an object movement prediction module(OMPM), and an adaptive background estimation module (ABEM). The BCM is processed for checking the existence of objects. To speed up the image processing time and to precisely track multiple objects under the object's mergence, a concept of a simple window tracking method is adopted in the OMPM. The ABEM separates the foreground from the background in the reset simple tracking window in the OMPM. It is shown through experimental results that the proposed FDBA algorithm is robustly adaptable to the background variation in a short processing time. Furthermore, it is shown that the proposed method can solve the problems of mergence, cross and split that are brought up in the case of tracking multiple moving objects.

다중이동물체 추적을 위한 모델생성 알고리즘 (Model Creation Algorithm for Multiple Moving Objects Tracking)

  • 조남형;김하식;이명길;이주신
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.633-637
    • /
    • 2001
  • 본 논문은 모델기반 다중이동물체 추적을 위한 모델생성 알고리즘을 제안하였다. 제안한 알고리즘은 배경영상에 이동물체가 초기 진입했을 때의 초기모델생성 단계와 이동물체 추적 단계에서의 모델 갱신 단계로 구분하였다. 초기모델생성 단계에서는 차영상과 클러스터링 기법을 이용하여 분할된 분할영상과 현재프레임 영상에 대한 윤곽선 영상과의 로직 AND 연산을 수행하여 초기모델을 생성하였다. 모델갱신 단계에서는 하우스돌프 거리(Hausdorff Distance)와 2D-Logarithmic 탐색 알고리즘을 이용하여 추적중인 이동물체의 형태변화에 적응할 수 있도록 매 프레임 마다 새로운 모델을 갱신하였다. 실험은 도로에서 주행하는 자동차를 대상으로 도_의 실험을 수행하였다. 그 결과 도로에서 주행하는 자동차의 진입방향과 추적 대상 수가 불규칙한 경우에도 모델생성이 98% 이상 이루어짐을 알 수 있었다.

  • PDF

파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적 (Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter)

  • 김형복;고광은;강진식;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.106-111
    • /
    • 2011
  • 영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.

영상처리기술을 이용한 건축 구조물의 실시간 변위측정 시스템의 개발 (Development of Real-Time Displacement Measurement System for Multiple Moving Objects of construction structures using Image Processing Techniques)

  • 김성욱;서진호;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.764-769
    • /
    • 2003
  • The paper introduces a development result for displacement measurement system of multiple moving objects based on image processing technique. The image processing method adopts inertia moment theory for obtaining the centroid of the targets and basic processing algorithms of gray, binary, closing, labeling and etc. To get precise displacement measurement in spite of multiple moving targets, a CCD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in directions of X -Y coordinates. The precise alignment device is pan /tilt of X - Y type and the pan/tilt is controlled by DC servomotors which are driven by 80c196kc microprocessor based controller. The centers of the fiducial marks are obtained by a inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are stored in the database system in a real time. By using database system and internet, displacement data can be confirmed at a great distance and analyzed. The developed system shows the effectiveness such that it realizes the precision about 0.12mm in the position control of X -Y coordinates.

  • PDF

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

Video-based Height Measurements of Multiple Moving Objects

  • Jiang, Mingxin;Wang, Hongyu;Qiu, Tianshuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3196-3210
    • /
    • 2014
  • This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.

ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템 (ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data)

  • 심춘보;장재우;신용원;박병래
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.47-56
    • /
    • 2005
  • 이동체는 시간의 흐름에 따라 공간적인 위치, 모양, 크기등과 같은 다양한 속성들이 변화하며, 이러한 이동체는 시간과 공간적인 특성을 모두 가지고 있는 비디오 데이터의 중요한 특징정보에 해당한다. 본 논문에서는 멀티미디어 데이터 중에서도 특히 비디오 데이터내의 이동체의 궤적 정보를 이용하여 보다 효율적인 비디오 데이터 자체의 내용을 기반으로 하는 멀티미디어 정보검색 시스템인 ECoMOT(Efficient Content-based Multimedia Information Retrieval System using Moving Objects' Trajectories)을 제안한다. ECoMOT 시스템은 비디오 데이터내의 이동체의 궤적을 토대로 내용 기반 검색을 지원하기 위해 다음과 같은 기법을 포함한다. : (1) 다수의 이동체들의 궤적 정보를 모델링하기 위한 다중 궤적(multiple trajectory) 모델링 기법; (2) 다수의 이동체들로 구성된 주어진 두 궤적들 간의 유사도를 측정하여 유사성이 높은 순으로 검색할 수 있는 다중 궤적 기반 유사 궤적 검색 기법; (3) 대용량 궤적 데이터에서 원하는 궤적을 빠르게 검색할 수 있는 중첩 시그니쳐-기반 궤적 색인 기법(superimposed signature-based trajectory indexing technique); (4) 그래픽 인터페이스를 이용한 편리한 이동체의 궤적 추출 과 질의 생성 및 검색 인터페이스.

Moving image segrnentation에 관한 연구 (A study on the moving image segmentation)

  • 이원희;변재웅;김재영;정진현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1347-1349
    • /
    • 1996
  • Most real image sequences contain multiple moving objects or multiple motions. In this paper, we segmented the moving objects with optical flow. Motion estimation by this method can estimate and compress the image sequences better than other methods such as block matching method. And, especially, we can make new image sequences by synthesizing the segmented objects. But, it takes too much time for motion estimation. And, it is not easy for a hardware implementation.

  • PDF

골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템 (Livestock Theft Detection System Using Skeleton Feature and Color Similarity)

  • 김준형;주영훈
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.