• Title/Summary/Keyword: Multiple Mobile Node

Search Result 114, Processing Time 0.019 seconds

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

Interference-Avoidance Based Localization for Multiple Mobile Nodes in Mobile Wireless Sensor Networks (모바일 센서네트워크에서 다중 이동 노드를 위한 간섭회피 기반 위치인식)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.91-100
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose IAL, the localization technique with interference avoidance for multiple mobile nodes in mobile wireless sensor networks. In IAL, interference is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we define LIP packet type for localization initiation by mobile node and LGP packet type for localization grant by anchor node. LRP packet type is used to reject localization by anchor node for interference avoidance. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and IAL provides efficient localization.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

A Study on Making use of Multiple Interfaces with Mobile Node Simultaneously (이동 단말의 다중 인터페이스 동시 사용에 관한 고찰)

  • You Tae-wan;Lee Seung-yun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1412-1418
    • /
    • 2005
  • Recently, more and more portable terminals probably have multiple interfaces to be connected to different access technologies. Each technology has its specific characteristics in terms of coverage area, bandwidth, reliability, etc. For example, the mobile node is equipped with three heterogeneous interfaces; IEEE 802.1lb MLAM link, CDMA Cellular link, and 802.16 WiMAX link These mobile nodes may be reachable through different links at the same time or use each interface alternately depending on the network environment. As like this, the portable terminal equipped multiple interfaces can have many benefits; it should be connect to Internet through other interface in case of occurring to failure for currently activate interface, and it should share a mount of traffic efficiently per interface etc. This environment is called end node Multihoming. However, current most Internet protocols are designed originally with single interface in mind. So these potocols do not provide methods for supporting simultaneous diffentiated use of multiple access technologies. In this paper, firstly we have to refer technical consideration items to use multiple interfaces based on IPv6 simultaneously. And we should propose extended registration mechanism for multiple addresses being acquired from interfaces to support reliable accessibility and vertical handover.

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Design and Implementation of a Fast Mobile IP Handover Mechanism Using Multiple Pre-registrations (복수의 사전등록을 사용한 고속 이동 IP 핸드오버 방법의 설계 및 구현)

  • Park, Jong-Tae;Kim, Yong-Hoon;Cho, Yeong-Hun;Lee, Wee-Hyuk
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • IETF's FMIPv6 protocol enables a mobile node to switch to the reactive mode of handover operation when the prediction of the movement is incorrect. In this case, the mobile node may experience severe service disruption due to large handover latency and packet loss. In order to solve this problem, we propose a fast mobile IP handover with multiple pre-registrations. In the proposed approach, the new temporary IP addresses are prepared in advance at multiple locations where the mobile node may probably move into. In this case, even though the prediction is wrong, the mobile node can move into the alternative locations without causing service disruption. We have designed and implemented a prototype system, and measured the performance of the proposed system. The experimental results show that the proposed approach can reduce the handover latency drastically.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

Gateway Discovery Algorithm Based on Multiple QoS Path Parameters Between Mobile Node and Gateway Node

  • Bouk, Safdar Hussain;Sasase, Iwao;Ahmed, Syed Hassan;Javaid, Nadeem
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2012
  • Several gateway selection schemes have been proposed that select gateway nodes based on a single Quality of Service (QoS) path parameter, for instance path availability period, link capacity or end-to-end delay, etc. or on multiple non-QoS parameters, for instance the combination of gateway node speed, residual energy, and number of hops, for Mobile Ad hoc NETworks (MANETs). Each scheme just focuses on the ment of improve only a single network performance, i.e., network throughput, packet delivery ratio, end-to-end delay, or packet drop ratio. However, none of these schemes improves the overall network performance because they focus on a single QoS path parameter or on set of non-QoS parameters. To improve the overall network performance, it is necessary to select a gateway with stable path, a path with themaximum residual load capacity and the minimum latency. In this paper, we propose a gateway selection scheme that considers multiple QoS path parameters such as path availability period, available capacity and latency, to select a potential gateway node. We improve the path availability computation accuracy, we introduce a feedback system to updated path dynamics to the traffic source node and we propose an efficient method to propagate QoS parameters in our scheme. Computer simulations show that our gateway selection scheme improves throughput and packet delivery ratio with less per node energy consumption. It also improves the end-to-end delay compared to single QoS path parameter gateway selection schemes. In addition, we simulate the proposed scheme by considering weighting factors to gateway selection parameters and results show that the weighting factors improve the throughput and end-to-end delay compared to the conventional schemes.

A Data Gathering Scheme using Dynamic Branch of Mobile Sink in Wireless Sensor Networks (무선 센서망에서 이동 싱크의 동적 브랜치를 통한 데이터 수집 방안)

  • Lee, Kil-Hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2012
  • This paper suggests a data gathering scheme using dynamic branch tree in wireless sensor networks. A mobile sink gathers data from each sensor node using a dynamic data gathering tree rooted at the mobile sink node. As the sink moves, a tree that has multiple branch is formed and changed dynamically as with the position of the sink node. A hop-based scope filter and a restricted flooding scheme of the tree are also suggested. Simulation results show that the proposed data gathering scheme has better results in data arrival rate, the end-to-end delay and energy saving characteristics compared with the previous scheme.