• 제목/요약/키워드: Multiple Lyapunov function

검색결과 21건 처리시간 0.024초

표적 추적 성능 최적화 및 충돌 회피를 위한 다수 에이전트 분산 제어 (Decentralized Control of Multiple Agents for Optimizing Target Tracking Performance and Collision Avoidance)

  • 김영주;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.693-698
    • /
    • 2016
  • A decentralized control method is proposed to enable a group of robots to achieve maximum performance in multisensory target tracking while avoiding collision with the target. The decentralized control was designed based on navigation function formalism. The study showed that the multiple agent system converged to the positions providing the maximum performance by the decentralized controller, based on Lyapunov and Hessian theory. An exemplary simulation was given for a multiple agent system tracking a stationary target.

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.

적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발 (Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving)

  • 오광석;이종민;송태준;오세찬;이경수
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

6자유도 운동재현용 베드의 순기구학 추정기 설계 (Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed)

  • 강지윤;김동환;이교일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.

제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어 (Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages)

  • 신진호;김원호
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.

입력 포화가 존재하는 다중 에이전트 시스템을 위한 PI기반의 봉쇄제어 (PI-based Containment Control for Multi-agent Systems with Input Saturations)

  • 임영훈;탁한호;강신출
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.102-107
    • /
    • 2021
  • 본 논문에서는 입력 포화가 존재하는 다중 에이전트 시스템의 봉쇄제어 문제를 다룬다. 봉쇄제어의 목표는 추종 에이전트들을 리더 에이전트들에 의해 형성된 convex hull 안으로 몰아넣음으로써 군집 행동을 얻는 것이다. 본 논문에서는 일정한 속도로 움직이는 리더 에이전트들을 고려한다. 움직이는 리더들을 고려한 봉쇄 문제를 해결하기 위하여 PI기반의 분산제어 알고리즘을 제안한다. 다음으로 추종 에이전트들의 목표 위치로의 수렴성을 해석한다. 구체적으로 포화 비선형성을 고려하기 위하여 적분 형태의 리아프노프 함수를 적용한다. 그리고 Lasalle's Invariance Principle을 기반으로 임의의 상수 이득들에 대하여 오차 상태들의 점근적 수렴성을 보인다. 마지막으로 고정된 리더들과 일정한 속도로 움직이는 리더들을 고려한 시뮬레이션을 진행하여 이론적 결과를 검증하였다.