• Title/Summary/Keyword: Multiple Decision Method

Search Result 460, Processing Time 0.023 seconds

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

  • Jiang, Jian;Zhang, Qijie;Li, Liulian;Chen, Wei;Ye, Jihong;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.127-154
    • /
    • 2020
  • Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.

A study of Vertical Handover between LTE and Wireless LAN Systems using Adaptive Fuzzy Logic Control and Policy based Multiple Criteria Decision Making Method (LTE/WLAN 이종망 환경에서 퍼지제어와 정책적 다기준 의사결정법을 이용한 적응적 VHO 방안 연구)

  • Lee, In-Hwan;Kim, Tae-Sub;Cho, Sung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.271-280
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate, the system service cost and handover attempt number.

Performance Comparison of Clustering using Discritization Algorithm (이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가)

  • Won, Jae Kang;Lee, Jeong Chan;Jung, Yong Gyu;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • Datamining from the large data in the form of various techniques for obtaining information have been developed. In recent years one of the most sought areas of pattern recognition and machine learning method is created with most of existing learning algorithms based on categorical attributes to a rule or decision model. However, the real-world data, it may consist of numeric attributes in many cases. In addition it contains attributes with numerical values to the normal categorical attribute. In this case, therefore, it is required processes in order to use the data to learn an appropriate value for the type attribute. In this paper, the domain of the numeric attributes are divided into several segments using learning algorithm techniques of discritization. It is described Clustering with other data mining techniques. Large amount of first cluster with characteristics is similar records from the database into smaller groups that split multiple given finite patterns in the pattern space. It is close to each other of a set of patterns that together make up a bunch. Among the set without specifying a particular category in a given data by extracting a pattern. It will be described similar grouping of data clustering technique to classify the data.

  • PDF

A Scheme for Network Selection and Heterogeneous Handover in Hierarchical Wireless Multiple Access Networks with IMS (IMS를 포함한 계층적 무선 멀티 억세스 네트워크에서의 네트워크 선택 및 핸드오버 기법)

  • Moon, Tae-Wook;Kim, Moon;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the research relative to NGN(Next Generation Network) is progressing in 3GPP(The 3rd Generation Partnership Progect), IETF(Internet Engineering Task Force), and so on. Although user needs frequently mobility which is various service pattern, In accordance with the development of these various applications, IMS(IP Multimedia Subsystem) and hierarchical networks ie, Femtocell/WiBro/3G etc is constructed for more user demands which provide service in anytime, anywhere. It is necessary to optimum network selection criterion which consider to wireless signal quality add to user service profile and service network traffic balance. NGN also needs a method to perform heterogeneous handover and to constraint Ping-pong phenomenon when using existing terminal-based handover decision. This paper proposes scheme for network selection and heterogeneous handover procedure in hierarchical wireless multi-access network based on SIP-MIH(Session Initiation Protocol-Media Independent Handover) with IMS by using user service profile that the considerations are dealing with not only selection and registration of various access network but also easy of developing the terminal.

A Route Search of Urban Traffic Network using Fuzzy Non-Additive Control (퍼지 비가법 제어를 이용한 도시 교통망의 경로 탐색)

  • 이상훈;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.103-113
    • /
    • 2003
  • This paper shows alternative route search and preference route search for the traffic route search, and proposes the use of the fuzzy non-additive controller by the application of AHP(analytic hierarchy process). It is different from classical route search and notices thinking method of human. Appraisal element, weight of route is extracted from basic of the opinion gathering for the driving expert and example of route model was used for the finding of practice utility. Model evaluation was performed attribute membership function making of estimate element, estimate value setting, weight define by the AHP, non additive presentation of weight according to $\lambda$-fuzzy measure and Choquet fuzzy integral. Finally, alternative route search was possible to real time traffic route search for the well variable traffic environment, and preference route search showed reflection of traffic route search disposition for the driver individual. This paper has five important meaning. (1)The approach is similar to the driver's route selection decision process. (2)The approach is able to control of route appraisal criteria for the multiple attribute. (3)The approach makes subjective judgement objective by a non additive. (4)The approach shows dynamic route search for the alternative route search. (5)The approach is able to consider characteristics of individual drivers attributed for the preference route search.

Depression during Pregnancy and the Postpartum (임신 및 산후 우울증)

  • Kim, Youl-Ri
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.15 no.1
    • /
    • pp.22-28
    • /
    • 2007
  • The pregnancy and postpartum period appear to be a time of heightened vulnerability for the development of major depression in some women. Postpartum depression affects 10% of women within a few weeks immediately postpartum. Postpartum depression is associated with disturbances in the mother-infant relationship, which in turn have an adverse impact on the course of child cognitive and emotional development. Depression during pregnancy is also common, although it has been relatively neglected. Psychopathological symptoms during pregnancy have physiological consequences for the fetus. Understanding the aetiology of perinatal depression requires integrating of multiple psychosocial and biological risk factors. The treatment of depressed pregnant women requires skilled decision making by psychiatrists. Risk-benefit analysis is appropriate method for intervention fur depression in pregnancy. Effective treatments for depression in pregnancy include psychotherapy, antidepressant medication and electroconvulsive therapy. In treatment of postpartum depression, the biological, psychological, and social interventions are included. Prescribing antidepressants(such as fluoxetine), estrogen in severe and chronic cases, and counselling can be effective for improving maternal mood and aspects of infant outcome. Ongoing research is directed to further elucidating neurohormonal and psychosocial contributions to depression during pregnancy or postpartum. Screening for risk factors and symptoms for depression need to be incorporated into antenatal and pediatric clinics.

  • PDF

Relation of Self Leadership and Empowerment and Organization Innovation Action in Private Security Guard (민간경비원의 셀프리더십과 임파워먼트 및 조직혁신행동의 관계)

  • Kim, Kyong-Sik;Kim, Chan-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.377-387
    • /
    • 2012
  • The purpose of this study is to investigate the relationship between self leadership and empowerment and organization innovation action in private security guard. This study established private security guards who is being located in Seoul, 2011 and work in the private security company by population. Using purposive sampling method, 293 samples were drawn and were used for the final analysis. Using SPSSWIN 18.0, frequency analysis, factor analysis, reliability analysis, multiple regression analysis and path analysis were performed. Cronbach's ${\alpha}$ value which shows the reliability of the questionnaire came out to be over .831. The conclusion is following. First, private security guard's self leadership affects to empowerment. That is, influence and semanticity are enlarged as action center strategy, natural compensation strategy is attained well. Also, capacity, self decision power is enlarged as constructive thinking strategy, natural compensation strategy is attained well. Second, private security guard's self leadership affects to organization innovation action. In other words, innovation action is increased as action center strategy is attained well. Also, organization's innovation result is enlarged as constructive thinking strategy, action center strategy, natural compensation strategy are attained well. Third, private security guard's empowerment affects on organization innovation action. That is, innovation action, innovation result appears high in case of influence, semanticity is enlarged. Fourth, private security guard's self leadership exerts direction indirect effect in empowerment and organization innovation action. Thus, empowerment is an important variable that mediate self leadership and organization innovation action.

Face Recognition based on Hybrid Classifiers with Virtual Samples (가상 데이터와 융합 분류기에 기반한 얼굴인식)

  • 류연식;오세영
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper presents a novel hybrid classifier for face recognition with artificially generated virtual training samples. We utilize both the nearest neighbor approach in feature angle space and a connectionist model to obtain a synergy effect by combining the results of two heterogeneous classifiers. First, a classifier called the nearest feature angle (NFA), based on angular information, finds the most similar feature to the query from a given training set. Second, a classifier has been developed based on the recall of stored frontal projection of the query feature. It uses a frontal recall network (FRN) that finds the most similar frontal one among the stored frontal feature set. For FRN, we used an ensemble neural network consisting of multiple multiplayer perceptrons (MLPs), each of which is trained independently to enhance generalization capability. Further, both classifiers used the virtual training set generated adaptively, according to the spatial distribution of each person's training samples. Finally, the results of the two classifiers are combined to comprise the best matching class, and a corresponding similarit measure is used to make the final decision. The proposed classifier achieved an average classification rate of 96.33% against a large group of different test sets of images, and its average error rate is 61.5% that of the nearest feature line (NFL) method, and achieves a more robust classification performance.