단순 베이지언 분류모형은 구현이 간단하고 효율적이기 때문에 실용적으로 사용하기에 적합하다. 그러나 이 분류모형은 많은 기계학습 도메인에서 우수한 성능을 보임에도 불구하고 문서분류에 적용되었을 경우에는 그 성능이 매우 낮은 것으로 알려져왔다. 본 논문에서는 단순 베이지언 분류모형중 가장 성능이 우수한 것으로 알려진 다항 시행접근 단순 베이지언 분류모형을 개선하는 세가지 방법을 제안한다. 첫 번째는 범주에 대한 단어의 확률추정방법을 문서모델에 기반하여 개선하는 것이고, 두 번째는 문서의 길이에 따라 범주와의 관련성이 선형적으로 증가하는 것을 억제하기 위해 길이에 대한 정규화를 수행하는 것이며, 마지막으로 범주판정에 중요한 역할을 하는 단어들의 영향력을 높여주기 위하여 상호정보가중 단순 베이지언 분류방법을 사용하는 것이다. 제안하는 방법들은 문서분류기의 성능 평가를 위한 벤치마크 문서집합인 Reuters21578과 20Newsgroup에서 기존의 방범에 비해 상당한 성능향상을 가져옴을 알 수 있었다.
Kim, Jang Hyun;Park, Min Hyung;Kim, Yerin;Nan, Dongyan;Travieso, Fernando
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1630-1648
/
2021
Owing to the unprecedented COVID-19 pandemic, the pharmaceutical industry has attracted considerable attention, spurred by the widespread expectation of vaccine development. In this study, we collect relevant topics from news articles related to COVID-19 and explore their links with two South Korean pharmaceutical indices, the Drug and Medicine index of the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) Pharmaceutical index. We use generalized Dirichlet-multinomial regression (g-DMR) to reveal the dynamic topic distributions over metadata of index values. The results of our analysis, obtained using g-DMR, reveal that a greater focus on specific news topics has a significant relationship with fluctuations in the indices. We also provide practical and theoretical implications based on this analysis.
Within the conventional transportation planning process, "trip distribution" has a significant role to play. The most widely applied trip distribution model is the gravity model, for which Wilson provided the theoretical basis in 1967. The concept of the gravity model, however, still remains ambiguous if we analyze the "trip distribution" with a disaggregate data set. Thus, this paper hypothesizes that the gravity technique is still valid even with the disaggregate data set, by proving that the estimated coefficients of the gravity model, which is derived under the principle of entropy maximization, are identical with those of the multinomial logit model, which is derived under the principle of individual utility maximization.tility maximization.
The multinomial logit model has been applied for various choice problems. Among others, the joint destination mode choice, the mode choice and the route choice are the three major modeling topics for korean transportation planners. This paper examines with real world data (the Olympic road and its competing two major arterials) the usefulness of a Logit route choice model. Quites surpisingly, it is found that the multinomial route choice behavioral model calibrated for this study based on (0,1) individula data base can not provide a good estimate for O-D trips less than 6㎞. 400data points and 3case studies might not be sufficient for a sound conclusion. It is, however, believed from a series of similar studies conducted by the authors that the route choice behavior is more sensitive (more demand elastic with respect to travel time changes) than the mode choice and the shorter trip, the more sensitive. The travel time parameters for destination choice models are usually smalle than the travel time parameters for mode choice models and these parameters (for mode choice models) turn our smaller than the travel time parameters for route choice models from this study. Table 2 in this paper shows parameter changes for three different markets and Table 3 shows the modeling errors when the estimated individual probabilities are aggregated into a route level.
본 연구에서는 농촌관광 방문객에게 제공되는 편의시설을 유형화하고 어떤 특징을 가진 방문객이 어떤 편의시설을 선호하는지를 규명하기 위한 방법과 그 분석결과를 제시하였다. 이를 위하여 우선 2단계 군집분석법을 사용하여 농촌관광 편의시설을 유형화하였다. 그 다음으로 군집분석에 사용되는 변인이 범주형 변인이 있을 경우 전통적인 군집분석 방법을 적용할 수 없기 때문에 2단계 군집분석을 하였다. 본 연구는 2단계 군집분석법이 범주형 변인으로 측정된 농촌관광의 편의시설을 유형화하는 데 매우 유용하다는 것을 보여 주고 있다. 다중로짓 모형을 사용하여 특정 편의시설 유형을 선호할 확률에 영향을 미치는 농촌관광 방문자의 사회인구학적 특성과 여행특성을 규명하였다. 즉, 다중로짓 모형을 통해 참조항(일반농가형)으로 설정된 편의시설 유형에 비해 특정 편의시설을 선호할 확률에 영향을 미치는 소비자의 특성을 규명할 수 있다는 것이 본 연구의 특징이다.
The purpose of this study is to propose types of joint venturesthat can increase the competitivenessof a company in the marketplace. We examine the characteristics of individual venture enterprises based on technology. We considered 16 TEA in order to categorize companies into four groups. Next, we used a multinomial logistic regression model to identify the significant characteristics of a venture company that successfully predicts group membership. Based on this information, we propose various forms of joint venture which complement each other and produce higher overall competence. Our study can provide important feedback information to academics, Policy-makers.
본 연구에서는 다항로짓모형 기반의 차종선택모형을 추정하여 개별 구매자의 차종선택행태를 분석하였다. 차량운전자를 대상으로 SP 설문조사를 수행하여 모형추정을 위한 자료를 수집하였으며, 설문응답자가 선택 가능한 대안은 가솔린차, HEV, PHEV, EV로 한정하였다. 모형에 포함된 설명변수는 대부분 유의수준 5% 하에서 유의한 것으로 나타났으며, price, fuel 변수를 제외한 나머지 변수는 모두 양(+)의 부호로 상식적인 방향과 일치하여 결과가 합리적인 것으로 판단된다. 중 대형을 선택하는 구매자는 타 차급을 선택하는 구매자보다 경제적 여유가 있어 차량가격 등에 비하여 상대적으로 지출금액이 낮은 연료비는 크게 고려하지 않는 경향이 강하다. 이러한 이유로 대형 차급의 모형에서는 fuel 변수가 유의하지 않은 것으로 판단되며, 사회경제변수의 경우 경 소형에서는 age, infor 변수가, 중 대형에서는 age, infor, inc3 변수가 통계적으로 유의한 것으로 나타났다.
Fog may have a significant impact on road conditions. In an attempt to improve fog predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, multinomial logistic regression, neural network and support vector machine. To validate machine learning models, the results from the simulation was compared with the fog data observed over Jeju(184 ASOS site) and Gosan(185 ASOS site). Predictive rates proposed by six data mining methods are all above 92% at two regions. Additionally, we validated the performance of machine learning models with WRF (weather research and forecasting) model meteorological outputs. We found that it is still not good enough for operational fog forecast. According to the model assesment by metrics from confusion matrix, it can be seen that the fog prediction using neural network is the most effective method.
본 연구는 임금과 생산성의 관계에 대한 선행 연구에서 근호자의 생산성 지표로서 인사고과 정보를 활용한 Medoff and Abraham과 Flabbi and Ichino의 연구를 한국 대기업의 인사데이터(2000년, 제조업 근로자)에 적용하여 재현하였다. 임금함수의 OLS 추정과 임금 및 인사고과 분포를 활용한 다항로짓함수 추정을 통해 분석한 결과, 근로자 개인의 생산성을 통제한다고 하더라도 연공임금은 계속 나타났다. 이는 선행연구와 동일하게 연공임금을 설명함에 있어 인적자본 이론보다는 인센티브 이론이 더 적절하다는 것을 시사한다.
Factors for promoting the resident participation in mountain villages are suggested to introduce the activity-oriented program of green tourism using a multinomial logit model(MNLM). Direct surveying, using a structured questionnaire was performed on local residents in the different types of rural tourism villages such as mountain villages, agricultural themed villages, and the mixed types of villages. The MNLM revealed that participation intention in the program was significantly higher for males, those with lower education, and residents in mountain villages. The participation intention of the program had a negative relationship with the increase of expected problems not from the program itself, but from the results of the program such as income distribution and nature destruction. Participation intention also increased with the indirect effects of an investment by the Village Development Project, such as local cooperativeness, public mind, etc. It was suggested that to introduce the activity-oriented program in mountain villages, negative effects from the results had to be minimized, and positive effects from the indirect changes between local residents had to be maximized through better communication and policy endeavors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.