• Title/Summary/Keyword: Multilayer boards

Search Result 13, Processing Time 0.026 seconds

Multi-stack Technique for a Compact and Wideband EBG Structure in High-Speed Multilayer Printed Circuit Boards

  • Kim, Myunghoi
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.903-910
    • /
    • 2016
  • We propose a novel multi-stack (MS) technique for a compact and wideband electromagnetic bandgap (EBG) structure in high-speed multilayer printed circuit boards. The proposed MS technique efficiently converts planar EBG arrays into a vertical structure, thus substantially miniaturizing the EBG area and reducing the distance between the noise source and the victim. A dispersion method is presented to examine the effects of the MS technique on the stopband characteristics. Enhanced features of the proposed MS-EBG structure were experimentally verified using test vehicles. It was experimentally demonstrated that the proposed MS-EBG structure efficiently suppresses the power/ground noise over a wideband frequency range with a shorter port-to-port spacing than the unit-cell length, thus overcoming a limitation of previous EBG structures.

Charge Formation in PCB Insulations (PCB 절연체에서 전하 형성)

  • Lee, Joo-Hong;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.264-265
    • /
    • 2008
  • While the reliability of bulk insulation has become important particularly in multilayer boards and embedded boards, electronics are to be used under various environments such as at high temperature and in high humidity. We observed internal space charge behavior for two types of epoxy composites under dc electric fields to investigate the influence of water at high temperature. In the case of glass/epoxy specimen, homocharge is observed at water-treated specimen, and spatial oscillations become clearer in the water-treated specimens. Electric field in the vicinity of the electrodes shows the injection of homocharge. In aramid/epoxy specimens, heterocharge is observed at water-treated specimens, i.e. negative charge accumulates near the anode, while positive charge accumulates near the cathode. Electric field is enhanced just before each electrode. In order to further examine the mechanism of space charge formation, we have developed a new system that allows in situ space charge observation during ion migration tests at high temperature and high humidity. Using this in situ system.

  • PDF

A Study on Multilayer Routing Problem by CAD system (CAD 시스템을 사용한 다층 Routing 문제에 관한 연구)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.543-549
    • /
    • 1986
  • A topologically based interconnection routing of multilayer printed circuit boards has been proposed. This study focuses on modeling the relative positioning of the interconnect paths rather than absolute positioning within a fixed coordinate system, thereby avoiding simplifications that impose restrictin on the path shapes.

  • PDF

THE RECENT TREND OF BUILD-UP PRINTED CIRCUIT BOARD TECHNOLOGIES

  • Takagi, Kiyoshi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • The integration of the LSI has been greatly improved and the circuit patters on the LSI are becoming finer line and pitch. The high-density electronic packaging technology is improved. In order to realize the high-density packaging technology, the density of the circuit wiring of the printed circuit boards have also been more dense. The build-up process multilayer printed circuit board technology have a lot of vias, possibilities of the finer conductor wirings and have a freedom of capabilities of wiring design. The build-up process printed circuit boards have the wiring rules which are the pattern width: $100-20\mu\textrm{m}$, the via hole diameter: $100-50\mu\textrm{m}$. There three kinds of build-up processes as far materials and hole drilling. In this paper, the recent technology trends of the build-up printed circuit board technologies are described.

  • PDF

A Study on the EMC Characteristics of Bare PCB for Reliability of High-Multilayer PCB (고다층 보드 신뢰성 확보를 위한 베어보드 EMC 특성 연구)

  • Jin Sung Park;Kihyun Kim;Kyoung Min Kim;Sung Yong Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.94-98
    • /
    • 2023
  • In the case of high-speed data transmission on high multilayer boards, signal coherence is a problem, especially due to the via hole, and a solution to improve return loss or insertion loss by applying a back drill to the via hole is being proposed. In this paper, Near-Field Electromagnetic measurements were made on a high multilayer board to determine how the presence or absence of back drill affects signal consistency. For this purpose, we used a signal generator, spectrum analyzer, and EMC scanner on a test board to determine if it is possible to distinguish between areas with and without back drill in the via holes of the stubs on the board. Also, we analyzed the measured value of S11, S21 and EMC etc. for how much it improves the signal attenuation of the stub with back drill. Through this, we knew that less electromagnetic waves are generated the stub via with back drill. At future research, we will analyze how much it improves the signal loss and electromagnetic waves due to the depth of back drill.

  • PDF

Study of SI Characteristic of Multilayer PCB with a Through-Hole Via (관통형 비아가 있는 다층 PCB의 SI 성능 연구)

  • Kim, Li-Jin;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • In this paper, SI(Signal Integrity) characteristic of the 4-layer PCB(Printed Circuit Boards) with a through-hole via was analyzed by impedance mismatching between the through-hole via and the transmission line, and deterioration of clock pulse response characteristic due to the P/G plane resonances which are generated between the power and the ground plane. The minimized impedance mismatching between the through-hole via and the transmission line for the improving of SI characteristic is confirmed by the TDR(Time Domain Reflector) simulation and lumped element modeling of the through-hole via. And the cancellation method of P/G plane resonances for improvement of the SI characteristic is represented by simulation result.

High-Frequency Modeling and the Influence of Decoupling Capacitors in High-Speed Digital Circuits (고속 고밀도 디지털 회로에서 사용되는 디커플링 캐패시터의 고주파 모델링과 영향)

  • 손경주;김진양;이해영;최철승;변정건
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.23-27
    • /
    • 2000
  • Simultaneous Switching Noise (SSN) propagated through parallel power and ground planes in high-speed multilayer printed circuit boards (PCBs) causes malfunction of both digital and analog circuits. To reduce SSN, decoupling capacitors are generally used in the PCBs. In this paper, we improve the equivalent circuit model of decoupling capacitor in high-frequency range to analyze the effect of SSN reduction accurately. The analysis is performed by the microwave and RF design system (MDS) method and the finite difference time domain (FDTD) method. We compared the results by the ideal capacitor model with those by the proposed model.

  • PDF

Design and Analysis of Double-Layered Microwave Integrated Circuits Using a Finite-Difference Time-Domain Method

  • Ming-Sze;Hyeong-Seok;Yinchao
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.255-262
    • /
    • 2004
  • In this paper, a number of double-layered microwave integrated circuits (MIC) have been designed and analyzed based on a developed finite-difference time-domain (FDTD) solver. The solver was first validated through comparisons of the computed results with those previously published throughout the literature. Subsequently, various double-layered MIC printed on both isotropic and anisotropic substrates and superstrates, which are frequently encountered in printed circuit boards (PCB), have been designed and analyzed. It was found that in addition to protecting circuits, the added superstrate layer can increase freedoms of design and improve circuit performance, and that the FDTD is indeed a robust and versatile tool for multilayer circuit design.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

Application of VSI-EBG Structure to High-Speed Differential Signals for Wideband Suppression of Common-Mode Noise

  • Kim, Myunghoi;Kim, Sukjin;Bae, Bumhee;Cho, Jonghyun;Kim, Joungho;Kim, Jaehoon;Ahn, Do Seob
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.827-837
    • /
    • 2013
  • In this paper, we present wideband common-mode (CM) noise suppression using a vertical stepped impedance electromagnetic bandgap (VSI-EBG) structure for high-speed differential signals in multilayer printed circuit boards. This technique is an original design that enables us to apply the VSI-EBG structure to differential signals without sacrificing the differential characteristics. In addition, the analytical dispersion equations for the bandgap prediction of the CM propagation in the VSIEBG structure are extracted, and the closed-form expressions for the bandgap cutoff frequencies are derived. Based on the dispersion equations, the effects of the impedance ratio, the EBG patch length, and via inductances on the bandgap of the VSI-EBG structure for differential signals are thoroughly examined. The proposed dispersion equations are verified through agreement with the full-wave simulation results. It is experimentally demonstrated that the proposed VSI-EBG structure for differential signaling suppresses the CM noise in the wideband frequency range without degrading the differential characteristics.