• 제목/요약/키워드: Multilayer Perceptron (MLP)

검색결과 133건 처리시간 0.029초

Multilayer Perceptron Model to Estimate Solar Radiation with a Solar Module

  • Kim, Joonyong;Rhee, Joongyong;Yang, Seunghwan;Lee, Chungu;Cho, Seongin;Kim, Youngjoo
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.352-361
    • /
    • 2018
  • Purpose: The objective of this study was to develop a multilayer perceptron (MLP) model to estimate solar radiation using a solar module. Methods: Data for the short-circuit current of a solar module and other environmental parameters were collected for a year. For MLP learning, 14,400 combinations of input variables, learning rates, activation functions, numbers of layers, and numbers of neurons were trained. The best MLP model employed the batch backpropagation algorithm with all input variables and two hidden layers. Results: The root-mean-squared error (RMSE) of each learning cycle and its average over three repetitions were calculated. The average RMSE of the best artificial neural network model was $48.13W{\cdot}m^{-2}$. This result was better than that obtained for the regression model, for which the RMSE was $66.67W{\cdot}m^{-2}$. Conclusions: It is possible to utilize a solar module as a power source and a sensor to measure solar radiation for an agricultural sensor node.

Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods

  • Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Sevval Ozturk;Hasan Sesli
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.565-575
    • /
    • 2023
  • This study represents a numerical research in vibration and buckling of functionally graded material (FGM) beam comprising edge crack by using finite element method (FEM) and multilayer perceptron (MLP). It is assumed that the material properties change only according to the exponential distributions along the beam thickness. FEM and MLP solutions of the natural frequencies and critical buckling load are obtained of the cracked FGM beam for clamped-free (C-F), hinged-hinged (H-H), and clamped-clamped (C-C) boundary conditions. Numerical results are obtained to show the effects of crack location (c/L), material properties (E2/E1), slenderness ratio (L/h) and end supports on the bending vibration and buckling properties of cracked FGM beam. The FEM analysis used in this paper was verified with the literature, and the fundamental frequency ratio ($\overline{P_{cr}}$) and critical buckling load ratio ($\overline{{\omega}}$) results obtained were compared with FEM and MLP. The results obtained are quite compatible with each other.

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

KL 변환을 이용한 multilayer perceptron에 의한 한국어 연속 숫자음 인식 (Korean continuous digit speech recognition by multilayer perceptron using KL transformation)

  • 박정선;권장우;권정상;이응혁;홍승홍
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.105-113
    • /
    • 1996
  • In this paper, a new korean digita speech recognition technique was proposed using muktolayer perceptron (MLP). In spite of its weakness in dynamic signal recognition, MLP was adapted for this model, cecause korean syllable could give static features. It is so simle in its structure and fast in its computing that MLP was used to the suggested system. MLP's input vectors was transformed using karhunen-loeve transformation (KLT), which compress signal successfully without losin gits separateness, but its physical properties is changed. Because the suggested technique could extract static features while it is not affected from the changes of syllable lengths, it is effectively useful for korean numeric recognition system. Without decreasing classification rates, we can save the time and memory size for computation using KLT. The proposed feature extraction technique extracts same size of features form the tow same parts, front and end of a syllable. This technique makes frames, where features are extracted, using unique size of windows. It could be applied for continuous speech recognition that was not easy for the normal neural network recognition system.

  • PDF

유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법 (An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms)

  • 정정수;권장우;류길수
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.48-57
    • /
    • 2003
  • 본 연구는 hidden Markov model(HMM)과 유전알고리 즘을 갖는 MLP(multilayer perceptron) 합성 분류기를 이용한 근전 신호의 인식에 관한 연구이다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상되게 된다. 근전 신호의 동적 특성은 연속 운동 인식처럼 신호의 길이 및 시작점과 끝점이 일정치 않고 시변성이 큰 경우에 반드시 고려되어야 하나, 일반 신경회로망에서는 이의 적용이 용이하지 않다. 따라서, 본 연구에서는 신호의 동적 특성에 대한 적응성을 갖는 HMM과 MLP 신경회로망을 결합시킨 구조를 갖는 인식기를 제안한다. 이러한 구조는 인식기의 입장에서 볼 때 HMM의 신호의 동적 특성에 대한 적응성과, MLP의 정적인 신호에 대한 우수한 분류력이 결합되어 동적인 신호에도 높은 인식율을 갖는 특성을 갖는다.

  • PDF

A Method of Determining the Scale Parameter for Robust Supervised Multilayer Perceptrons

  • Park, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.601-608
    • /
    • 2007
  • Lee, et al. (1999) proposed a unique but universal robust objective function replacing the square objective function for the radial basis function network, and demonstrated some advantages. In this article, the robust objective function in Lee, et al. (1999) is adapted for a multilayer perceptron (MLP). The shape of the robust objective function is formed by the scale parameter. Another method of determining a proper value of that parameter is proposed.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

MLP 기반 화자증명 시스템에서 학습 데이터 감축을 통한 등록속도 향상방법 (An Improvement of the Enrolling Speed for the MLP-Based Speaker Verification System through Reducing Learning Data)

  • 이태승;황병원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.619-621
    • /
    • 2002
  • MLP(multilayer perceptron)는 기존의 패턴인식 방법에 비해 몇 가지 이점을 제공하지만 학습에 비교적 많은 시간을 요구한다. 이 점은 화자증명 시스템의 인식방법으로서 MLP를 사용할 경우 등록시간이 길어지는 문제를 발생시킨다. 본 논문에서는 기존의 시스템에서 채택한 화자군집 방법을 응용하여 MLP 학습에 필요만 배경화자 수를 줄임으로써 화자등록 시간을 단축하는 방법을 제안한다.

  • PDF

Development of Multilayer Perceptron Model for the Prediction of Alcohol Concentration of Makgeolli

  • Kim, JoonYong;Rho, Shin-Joung;Cho, Yun Sung;Cho, EunSun
    • Journal of Biosystems Engineering
    • /
    • 제43권3호
    • /
    • pp.229-236
    • /
    • 2018
  • Purpose: Makgeolli is a traditional alcoholic beverage made from rice with a fermentation starter called "nuruk." The concentration of alcohol in makgeolli depends on the temperature of the fermentation tank. It is important to monitor the alcohol concentration to manage the makgeolli production process. Methods: Data were collected from 84 makgeolli fermentation tanks over a year period. Independent variables included the temperatures of the tanks and the room where the tanks were located, as well as the quantity, acidity, and water concentration of the source. Software for the multilayer perceptron model (MLP) was written in Python using the Scikit-learn library. Results: Many models were created for which the optimization converged within 100 iterations, and their coefficients of determination $R^2$ were considerably high. The coefficient of determination $R^2$ of the best model with the training set and the test set were 0.94 and 0.93, respectively. The fact that the difference between them was very small indicated that the model was not overfitted. The maximum and minimum error was approximately 2% and the total MSE was 0.078%. Conclusions: The MLP model could help predict the alcohol concentration and to control the production process of makgeolli. In future research, the optimization of the production process will be studied based on the model.