DOI QR코드

DOI QR Code

Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods

  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Ecren Uzun Yaylaci (Technology Transfer Office, Recep Tayyip Erdogan University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Hasan Sesli (Department of Civil Engineering, Yalova University)
  • Received : 2022.11.02
  • Accepted : 2023.02.13
  • Published : 2023.02.25

Abstract

This study represents a numerical research in vibration and buckling of functionally graded material (FGM) beam comprising edge crack by using finite element method (FEM) and multilayer perceptron (MLP). It is assumed that the material properties change only according to the exponential distributions along the beam thickness. FEM and MLP solutions of the natural frequencies and critical buckling load are obtained of the cracked FGM beam for clamped-free (C-F), hinged-hinged (H-H), and clamped-clamped (C-C) boundary conditions. Numerical results are obtained to show the effects of crack location (c/L), material properties (E2/E1), slenderness ratio (L/h) and end supports on the bending vibration and buckling properties of cracked FGM beam. The FEM analysis used in this paper was verified with the literature, and the fundamental frequency ratio ($\overline{P_{cr}}$) and critical buckling load ratio ($\overline{{\omega}}$) results obtained were compared with FEM and MLP. The results obtained are quite compatible with each other.

Keywords

References

  1. Abdoun, F. and Azrar, L. (2021), "Nonlinear thermal analysis of multilayered composite and FGM plates with temperature-dependent properties based on an asymptotic numerical method", Arch. Appl. Mech., 91, 4361-4387. https://doi.org/10.1007/s00419-021-01999-x.
  2. Agatonovic-Kustrin, S. and Beresford, R. (2000), "Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research", J. Pharm. Biomed. Anal., 22(5), 717-727. https://doi.org/10.1016/S0731-7085(99)00272-1.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, B-T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  4. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", ThinWall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  5. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compd., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  6. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concr., 26(3), 285- 292. https://doi.org/10.12989/CAC.2020.26.3.285.
  7. ANSYS (2013), Swanson Analysis Systems Inc, USA.
  8. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504. https://doi.org/10.12989/SCS.2011.11.6.489.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Avcar, M. and Khalid, M.W. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11, 232. https://doi.org/10.1007/s12517-018-3579-2.
  11. Avcar, M., Hadji, L. and Civalek, O. (2021), "Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory", Compos. Struct., 276, 114564. https://doi.org/10.1016/j.compstruct.2021.114564.
  12. Buntoung, S., Pariyothon, J. and Detkhon, P. (2020), "Estimation of atmospheric precipitable water in Thailand using an artificial neural network", NUJST., 29(2), 11-20. https://doi.org/10.14456/nujst.2021.12.
  13. Chen, J.B., Guo, H.Y. and Wu, K. (2003), "Discrete mechanics and the finite element method", Arch. Appl. Mech., 73, 421-433. https://doi.org/10.1007/s00419-003-0302-9.
  14. Chen, L., Hu, D., Deng, H., Cui, Y. and Zhou, Y. (2016), "Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis", Steel Compos. Struct., 21(5), 1031-1043. https://doi.org/10.12989/SCS.2016.21.5.1031.
  15. Choudhary, J., Patle, B.K., Ramteke, P.M., Hirwani, C.K., Panda, S.K. and Katariya, P.V. (2022), "Static and dynamic deflection characteristics of cracked porous FG panels", Int. J. Appl. Mech., 14(7), 2250076. https://doi.org/10.1142/S1758825122500764.
  16. Cun, L.Y., Denker, J.S. and Solla, S.A. (1990), "Optimal brain damage", Adv. Neural Inf. Process Syst., 2, 598-605.
  17. De Assis, F.M. and Gomes, G.F. (2021), "Crack identification in laminated composites based on modal responses using metaheuristics, artificial neural networks and response surface method: a comparative study", Arch. Appl. Mech., 91, 4389-4408. https://doi.org/10.1007/s00419-021-02015-y.
  18. Erdurcan, E.F. and Cunedioglu, Y. (2021), "Free vibration analysis of an aluminum beam coated with imperfect and damaged functionally graded material", Arch. Appl. Mech., 91, 1729-1737. https://doi.org/10.1007/s00419-020-01850-9.
  19. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  20. Fath, A.H., Madanifar, F. and Abbasi, M. (2020), "Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems", Petroleum, 6, 80-91. https://doi.org/10.1016/j.petlm.2018.12.002.
  21. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., 13(1), 91-107. https://doi.org/10.12989/SCS.2012.13.1.091.
  22. Ghouilem, K., Mehaddene, R., Ghouilem, J., Kadri, M. and Boulifa, D. (2021), "ANSYS modeling interface and creep behavior of concrete matrix on waste glass powder under constant static stress", Mater. Today Proc., 49(4), 1084-1092. https://doi.org/10.1016/j.matpr.2021.09.387.
  23. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037.
  24. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.A and Sen, A. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: finite element study", Injury, 53(12), 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003.
  25. Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. B. Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb.2016.10.039.
  26. Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. B. Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
  27. Keshtegar, B., Nehdi, M.L., Trung, N-T. and Kolahchi, R. (2021), "Predicting load capacity of shear walls using SVR-RSM model", Appl. Soft Comput., 112, 107739. https://doi.org/10.1016/j.asoc.2021.107739.
  28. Keshtegar, B., Xiao, M., Kolahchi, R. and Trung, N-T. (2020), "Reliability analysis of stiffened aircraft panels using adjusting mean value method". AIAA J., 58(12), 5448-5458. https://doi.org/10.2514/1.J059636.
  29. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  30. Kolahchi, R., Keshtegar, B. and Trung, N-T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  31. Kumar, S., Roshni, T. and Himayoun, D. (2019), "A comparison of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) approach for Rainfall-Runoff modelling", Civ. Eng. J., 5(10). http://dx.doi.org/10.28991/cej-2019-03091398.
  32. Labusch, M., Lemke, V., Schmitz-Antoniak, C., Schroder, J., Webers, S. and Wende, H. (2019), "FEM analysis of a multiferroic nanocomposite: comparison of experimental data and numerical simulation", Arch. Appl. Mech., 89, 1157-1170. https://doi.org/10.1007/s00419-019-01534-z.
  33. Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Technol., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006.
  34. Lezgy-Nazargah, M. (2016), "Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers", Mech. Adv. Mater. Struct., 23(3), 337-352. https://doi.org/10.1080/15376494.2014.981617.
  35. Lezgy-Nazargah, M., Shariyat, S. and Beheshti-Aval, B. (2011), "A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams", Acta Mech., 217, 219-242. https://doi.org/10.1007/s00707-010-0391-9.
  36. Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010.
  37. Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2020), "A penaltybased multifiber finite element model for coupled bending and torsional-warping analysis of composite beams", Eur. J. Mech. A. Solids, 80, 103915. https://doi.org/10.1016/j.euromechsol.2019.103915.
  38. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.
  39. Mottaghian, F., Darvizeh, A. and Alijani, A. (2019), "A novel finite element model for large deformation analysis of cracked beams using classical and continuum-based approaches", Arch. Appl. Mech., 89, 195-230. https://doi.org/10.1007/s00419-018-1460-0.
  40. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech., 102, e202100287. https://doi.org/10.1002/zamm.202100287.
  41. Pardo, L.H., Perez, D.M., Lorenzo, D.E.M. and de Oliveira Lira, C.A.B. (2021), "Coupled multi-physics simulation for the evaluation of an accelerator-driven Aqueous Homogeneous Subcritical System for medical isotope production", Prog. Nucl. Energy, 134, 103692. https://doi.org/10.1016/j.pnucene.2021.103692.
  42. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  43. Ramteke, P. M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020), "Static deflection simulation study of 2D Functionally graded porous structure", Materials Today: Proceedings, 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537.
  44. Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021a), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid, and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290.
  45. Ramteke, P.M., Patel, B. and Panda, S.K. (2021b), "Nonlinear eigenfrequency prediction of functionally graded porous structure with different grading patterns", Wave. Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2021.2005850.
  46. Ramteke, P.M., Kumar, V., Sharma, N. and Panda, S.K. (2022a), "Geometrical nonlinear numerical frequency prediction of porous functionally graded shell panel under thermal environment", Int. J. Non-Linear Mech., 143, 104041. https://doi.org/10.1016/j.ijnonlinmec.2022.104041.
  47. Ramteke, P.M., Panda, S.K. and Patel, B. (2022b), "Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels", Compos. Struct., 279, 114707. https://doi.org/10.1016/j.compstruct.2021.114707.
  48. Ramteke, P.M., Panda, S.K. and Sharma, N. (2022a), "Nonlinear vibration analysis of multidirectional porous functionally graded panel under thermal environment", AIAA J., 60(8), 4923-4933. https://doi.org/10.2514/1.J061635.
  49. Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2022b), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach", Eng. Comput., 38(4), 3077-3097. https://doi.org/10.1007/s00366-021-01449-w.
  50. Soomro, F.A., Alamir, M.A., El-Sapa, S., Ul-Haq, R. and Soomro, M.A. (2022), "Artificial neural network modeling of MHD slip-flow over a permeable stretching surface", Arch. Appl. Mech., 92, 2179-2189. https://doi.org/10.1007/s00419-022-02168-4.
  51. Trujillo, M.C.R., Alarcon, T.E., Dalmau, O.S. and Ojeda, A.Z. (2017), "Segmentation of carbon nanotube images through an artificial neural network", Soft. Comput., 21, 611-625. https://doi.org/10.1007/s00500-016-2426-1.
  52. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  53. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  54. Vincenzo, V., Malgioglio, G.L. and Landi, A. (2021), "Modelling the elastic energy of a bifurcated wafer: a benchmark of the analytical solution vs. The Ansys finite element analysis", Compos. Struct., 281, 114996. https://doi.org/10.1016/j.compstruct.2021.114996.
  55. Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civ. Eng., 13, 324-336. https://doi.org/10.1007/s11709-018-0466-6.
  56. Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006), "A multilayer perceptron based medical decision support system for heart disease diagnosis", Exp. Syst. Appl., 30(2), 272-281. https://doi.org/10.1016/j.eswa.2005.07.022.
  57. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83, 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
  58. Yas, M.H., Kamarian, S. and Pourasghar, A. (2014), "Application of imperialist competitive algorithm and neural networks to optimise the volume fraction of three-parameter functionally graded beams", J. Exp. Theor. Artif. Intell., 26(1), 1-12. https://doi.org/10.1080/0952813X.2013.782346.
  59. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org 10.12989/sem.2016.57.6.1143.
  60. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  61. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  62. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92, 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  63. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  64. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022c), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  65. Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 29(27), 6436-6450. https://doi.org/10.1080/15376494.2021.1979140.