• Title/Summary/Keyword: Multihop

Search Result 126, Processing Time 0.025 seconds

Energy and Delay Efficient Slot Reservation Mechanism for Multihop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크에서 에너지 소모와 전송 지연에 효율적인 슬롯 예약 메커니즘)

  • Park, Hyun Joo;Kim, Seong Cheol;Jeon, Jun Heon;Kim, Hye-Yun;Kim, Joong Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.102-105
    • /
    • 2014
  • 일반적으로 무선 센서네트워크에서 각 센서 노드들에서 생성된 데이터는 목적지 노드 즉, 싱크(sink) 노드로 전송되어진다. 본 논문에서는 이처럼 데이터 전송이 몰리게 되는 sink 노드 근처에서 노드들 사이에 전송된 데이터 패킷의 충돌을 줄임으로 에너지 효율과 지연의 성능을 향상시킬 수 있는 TDMA 기반의 MAC 프로토콜을 제안한다. 전송할 데이터를 가지는 노드들은 먼저 싱크 노드에게 자신이 전송할 데이터의 양을 포함하는 RTS 패킷을 전송한다. 이 RTS 패킷을 받은 싱크 노드는 각 노드들에게 전송할 수 있는 전송 스케줄을 노드들에게 보내고, 이 스케줄을 받은 각 노드들은 전송 스케줄에 맞추어 자신들에게 할당된 슬롯에 데이터 패킷을 전송함으로 충돌 없이 bursty데이터를 전송한다. 이 방법을 통하여 각 노드들은 동시에 멀티 슬롯을 할당 받아 여러 패킷을 전송할 수 있다. 따라서 버스티한 트래픽 전송에서 지연(Delay)을 줄이는 동시에 충돌을 없애 데이터 전송 효율을 높일 수 있다.

  • PDF

Design of cluster based routing protocol using representative path (대표 경로를 이용한 클러스터 기반 라우팅 프로토콜 설계)

  • Kim, Ah-Reum;Jang, You-Jin;Chang, Jae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.75-76
    • /
    • 2009
  • 무선 센서 노드는 한정된 자원을 가지기 때문에 에너지 효율성을 높이는 것이 필수적이다. 이를 위해서 통신 메시지를 감소시킬 수 있는 클러스터 기반 라우팅 기법이 연구되었다. 하지만 기존 연구들은 클러스터 헤더가 임의로 선정되기 때문에 헤더 노드의 위치가 편중될 수 있어 비효율적이다. 이를 해결하기 위하여 본 논문에서는 홉(hop) 수 기반의 대표 경로를 생성하여, 분산된 클러스터 헤더를 선정하여 클러스터를 구성하고, 클러스터 헤더간 멀티 홉(multihop)을 구성하는 라우팅 프로토콜을 설계한다. 대표 경로를 통해 클러스터 헤더의 위치 및 영역이 균일하게 분포되도록 선출하고, 싱크 노드의 방향을 인식함으로써 우회하지 않는 효율적인 경로를 구성한다.

Analysis of Flooding Algorithm using FEC in Wireless Multihop Networks (멀티홉 네트워크 환경에서 FEC 를 적용한 Flooding 기법 분석)

  • Jang, Jeong-Hun;Yang, Seung-Chur;Kim, Jong-Deok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.725-728
    • /
    • 2011
  • 멀티홉 네트워크에서 플러딩(Flooding) 기법은 토폴로지 내의 모든 노드에게 패킷을 전달하는 것이다. 대표적인 플러딩 기법인 Blind 플러딩은 패킷을 받은 모든 노드가 플러딩을 하기 때문에, 무선 네트워크의 전체적인 성능이 감소한다. 기존 연구에서는 성능 향상을 위해 중복 수신되는 패킷을 줄이는 데에만 초점이 맞춰져 있다. 하지만 실제 무선 네트워크 환경에서는 간섭에 따른 패킷 손실이 발생하고, 플러딩은 Broadcast 로 전송하기 때문에 재전송하여 손실 패킷을 복구할 수 없다. 본 논문에서는 Blind, Self-Pruning, Dominant-pruning 플러딩 기법에 재전송이 필요 없는 오류정정 기법(FEC)를 적용하여, 추가적인 잉여 데이터에 따른 전체 전송 패킷의 수와 플러딩 기법의 신뢰성을 분석 하였다.

Node Architecture and Cell Routing Strategies for ATM Applications in WDM Multihop Networks (WDM 다중홉 망에서 ATM 응용을 위한 노드 구조 및 셀 라우팅 기법)

  • Lee, Ho-Suk;Lee, Cheong-Hun;So, Won-Ho;Kwon Hyeok-Jung;Kim, Yeong-Cheon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.44-52
    • /
    • 1998
  • In this paper, we proposed a node architecture and cell routing strategies for ATM applications in WDM multihop networks. The proposed node architecture employs the optical delay loop for storing the cell which is failed in out-link contention. This optical delay loop allows the delay of one cell without the electro-optic conversion. Therefore, we can get the advantages of S&F(Store-and-Forward) routing in Deflection-based all-optical networks. To support the ATM applications efficiently. we considered the transmission priority of ATM cell so that high priority cell can be transmitted with lower loss and shorter delay than low priority one. Two kinds of routing strategies are designed for this architecture: Scheme-Ⅰand Scheme-Ⅱ. Scheme-Ⅰapplies S&F routing to high cell and Deflection routing to low cell, i.e., high cells are routed along the shortest path based on S&F routing, but low cells are deflected or lost. Schem-Ⅱ is similar to Scheme-Ⅰexcept that low cells can occupy the optical loop if it is available. This Scheme-Ⅱ increases the utilization of network resources without decreasing the throughput of high cell by reducing the low cell loss rate when traffic load is low. Simulation results show that our routing strategies have better performance than conventional ones under non-uniform traffic as well as uniform traffic.

  • PDF

Implementation of Campus Car Location Management System Using Received Signal Strength of Wireless Sensor Node (무선 센서노드의 전파수신강도(RSS)를 이용한 캠퍼스 차량 위치관리 시스템 구현)

  • Choi, Jun-Young;Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.473-476
    • /
    • 2008
  • USN(Ubiquotous Sensor Network) has been applied to various fields of industries such as logistics, environment management, traffic management, as well as IT industries including home network and telematics. Among the important techniques required to implement aforementioned applications, location management scheme is essential. In this paper, we proposed and implemented a new location measurement scheme based on RSSI of sensor node for campus car location management.

  • PDF

Relay Performance Analysis of TTR and STR Relay Modes in IEEE 802.16j MMR System

  • Seo, Si-O;Kim, Se-Jin;Kim, Seung-Yeon;Kim, Young-Il;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.230-240
    • /
    • 2010
  • The IEEE802.16j standard uses non-transparent relay stations to extend coverage. There are two types of non-transparent relay modes, that is, the time-division transmit and receive (TTR) relay mode which can operate with one of two types of frame structures, a single-frame and multiframe structure, and the simultaneous transmit and receive (STR) relay mode. In this paper, we analyze the relay performance of TTR and STR relay modes in IEEE 802.16j MMR system. We also propose a fair resource allocation scheme for the downlink relay frame. Numerical results show that relay performance of the TTR with a single-frame or a multiframe structure and that of the STR relay modes are almost the same in a two-hop system. However, in a three-hop system, the TTR mode with a single-frame structure outperforms other relay modes.

Shared Channel Scheme and Routing Algorithms of Every - Other- Row - Connecting Bilayered ShuffleNet for WDM Optical Networks (격행 연결 이중층 셔플넷을 이용한 광 WDM 네트워크 채널공유방식과 라우팅 알고리즘)

  • Ji, Yun-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.804-809
    • /
    • 2001
  • In this paper, a shared channel scheme and routing algorithms are proposed to reduce the number of wavelength channels for the optical WDM multihop networks using the every-other-row-connecting bilayered ShuffleNet scheme. In the shared channel scheme proposed, 2P nodes share the common wavelength channel reducing the number of required channels compare to other ones. By assigning an effective address each node, packets can be routed to the destination nodes through the intermediate nodes.

  • PDF

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.

A Survey on Communication Protocols for Wireless Sensor Networks

  • Jang, Ingook;Pyeon, Dohoo;Kim, Sunwoo;Yoon, Hyunsoo
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.231-241
    • /
    • 2013
  • Improvements in wireless sensor network (WSN) technology have resulted in a large number of applications. WSNs have been mainly used for monitoring applications, but they are also applicable to target tracking, health care, and monitoring with multimedia data. Nodes are generally deployed in environments where the exhausted batteries of sensor nodes are difficult to charge or replace. The primary goal of communication protocols in WSNs is to maximize energy efficiency in order to prolong network lifetime. In this paper, various medium access control (MAC) protocols for synchronous/asynchronous and single/multi-channel WSNs are investigated. Single-channel MAC protocols are categorized into synchronous and asynchronous approaches, and the advantages and disadvantages of each protocol are presented. The different features required in multi-channel WSNs compared to single-channel WSNs are also investigated, and surveys on multi-channel MAC protocols proposed for WSNs are provided. Then, existing broadcast schemes in such MAC protocols and efficient multi-hop broadcast protocols proposed for WSNs are provided. The limitations and challenges in many communication protocols according to this survey are pointed out, which will help future researches on the design of communication protocols for WSNs.

Routing in Vehicular Ad Hoc Networks: Issues and Protocols

  • Shrestha, Raj K.;Moh, Sang-Man;Chung, Il-Yong
    • Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.28-40
    • /
    • 2008
  • Vehicular ad hoc networks (VANETs) are a practical application class of wireless ad hoc networks, which consist of moving vehicles equipped with radio communication capabilities that collaborate to form a temporary network. This paper addresses issues and protocols of multihop routing in such emerging networks in the context of safety and infotainment applications. Due to the highly dynamic mobility of vehicles, frequent link breakage and short connection time are inevitable and, thus, the routing is a challenging task and interest for many researchers and industrial community. The frequent and dynamic change of topology makes the topology-based routing unreliable but the position-based routing more effective. The position-based routing consists of the location service which maps a node id to a geo-graphical position and the forwarding scheme which selects the next hop based on geo-graphical information of the node, its neighbors and the destination. The routing techniques are further categorized into geographical forwarding, trajectory forwarding and opportunistic forwarding based on the forwarding scheme. In this paper, we first present the distinguished properties of VANETs and the challenges and intractable issues posed in designing the routing protocols, followed by the comprehensive survey of existing routing protocols. Then, the different routing protocols designed for VANETs are compared in terms of characteristics, performance and application domains.

  • PDF