• Title/Summary/Keyword: Multidrug resistant bacteria

Search Result 102, Processing Time 0.025 seconds

Late Respiratory Infection after Lung Transplantation

  • Kim, Sang Young;Shin, Jung Ar;Cho, Eun Na;Byun, Min Kwang;Kim, Hyung Jung;Ahn, Chul Min;Haam, Suk Jin;Lee, Doo Yun;Paik, Hyo Chae;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Background: Aiming to improve outcome of lung transplantation (LTx) patients, we reviewed risk factors and treatment practices for the LTx recipients who experienced respiratory infection in the late post-LTx period (>1 month after LTx). Methods: We analyzed the clinical data of 48 recipients and donors from 61 LTx, who experienced late respiratory infections. Late respiratory infections were classified according to the etiology, time of occurrence, and frequency of donor-to-host transmission or colonization of the recipient prior to transplantation. Results: During the period of observation, 42 episodes of respiratory infections occurred. The organisms most frequently involved were gram (-) bacteria: Acinetobacter baumannii (n=13, 31.0%), Pseudomonas aeruginosa (n=7, 16.7%), and Klebsiella pneumoniae (n=4, 10.0%). Among the 42 episodes recorded, 14 occurred in the late post-LTx period. These were bacterial (n=6, 42.9%), fungal (n=2, 14.3%), viral (n=4, 28.5%), and mycobacterial (n=2, 14.3%) infections. Of 6 bacterial infections, 2 were from multidrug-resistant (MDR) A. baumannii and one from each of MDR P. aeruginosa, extended spectrum ${\beta}$-lactamase (+) K. pneumoniae, methicillin-resistant Staphylococcus aureus and Streptococcus pneumoniae. Infection-related death occurred in 6 of the 14 episodes (43%). Conclusion: Although the frequency of respiratory infection decreased sharply in the late post-LTx period, respiratory infection was still a major cause of mortality. Gram (-) MDR bacteria were the agents most commonly identified in these infections.

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.

H2O2 Generating Ability and Multi-Drug Resistance of Lactic Acid Bacteria Required for Long-Term Inpatient Treatment with Antibiotic Resistance

  • Yuk, Young Sam
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: In our study, in order to find lactic acid bacteria (LAB) with multi-drug resistance to antibiotics, we isolated 140 strains from 15 types of kimchi commercially available in Korea and 20 types of Kimchi made at home from January to December in 2016, and investigated their H2O2 generating ability and multi-drug resistance to antibiotics. Methods: In order to observe the H2O2 generation ability of LAB, we performed the experiment with methods such as Rabe, Hillier, and Kang. To test the antibacterial susceptibility of LAB, we used the disc agar diffusion method using MRS agar (Difco, USA) according to the CLSI and WHO test methods. There are 18 types of antibiotic discs used. Results: Out of the total numbers of 140 strains, 6 strains of Ent. Faecium, 25 strains of L. plantarum, 1 strain of L. rhamnosus, 3 strains of L. sakei, 1 strain of L. acidophilus, 1 strains St. thermophilus, and 7 of unidentified strains generated H2O2. The antibiotic susceptibility of Ent. Faecium indicated SXT, OX, NA, and E; and the antibiotic susceptibility of L. plantarum indicated NA; and the antibiotic susceptibility of St. thermophilus indicated NA, CC, RA, CTT, CM, and P ; and the antibiotic susceptibility of L. rhamnosus indicated SXT, VA, NA and CTT; and the antibiotic susceptibility of 6 strains of L. sakei indicated SXT, OX, NOR, NA, CTT and CIP, all indicating antibiotic resistance. In the case of multi-drug resistance to antibiotics for 53 strains of L. antarum, 8-drug resistance was the most common with 25 strains, followed by 7-drug-resistant strains with 18 strains, 9-drug-resistant strains with 4 strains, 6-drug-resistant strains with 3 strains, 5-drug-resistant strains with 2 strains, and 17-drug-resistant strains with 1 strain. In the case of multi-drug resistance to antibiotics for Ent. Faecium 27 strains, 9-drug resistance was most commonly identified as 9 strains, 8-drug resistance was identified as 6 strains, 7- and 11 drug resistances were identified as 4 strains each, and 4- and 6-drug resistances were identified as 1 strain each. Conclusion: Ent. Faecium, L. plantarum, L. rhamnosus, L. sakei, and St. thermophilus, shown to have anantibacterial activity in previous studies on LAB and shown to have and H2O2 generating ability, antibiotic resistance and multi-drug resistance in this study, are expected to be able to play an excellent role for long-term inpatients to use as an alternative to antibiotics and to cope with emerging antibiotic resistance.

Intravenous Colistin Therapy for Multidrug-Resistant Gram-Negative Bacterial Infections in Major Burn Injuries (중증 화상환자에서 다약제내성그람음성균의 Colistin 치료)

  • Cho, Gi yuon;Yoon, Jaechul;Chun, Jin Woo;Kim, Youngmin;Yim, Haejun;Kym, Dohern;Hur, Jun;Chun, Wook;Cho, Yong Suk
    • Journal of the Korean Burn Society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Purpose: The aim of this study was to investigate the characteristics of Acute Kidney Injury Network (AKIN)-defined nephrotoxicity in patients undergoing intravenous colistimethate sodium (CMS) therapy for major burns. Methods: This retrospective study included burn patients who received more than 48 h of intravenous CMS between September 2009 and December 2015. Data collection was performed using the institution's electronic medical record system. Patients assigned to the developed nephrotoxic group experienced aggravation of current AKIN stage during CMS treatment; those assigned to the non-nephrotoxic group experienced no change in current or exhibited improved AKIN stage during CMS therapy. Results: A total of 306 patients were included in this study. All patients were grouped according to AKIN stage: AKIN 0 (n=152); AKIN 1 (n=6); AKIN 2 (n=9); AKIN 3 (n=139). The baseline creatinine (Cr) level was 0.73 mg/dL. The incidence of nephrotoxicity was 50.3% according to AKIN stage; overall mortality was 45.8%. The non-nephrotoxic group consisted of 127 (74.7%) patients and 43 (25.3%) were in the developed nephrotoxic group. In patients requiring continuous renal replacement therapy (CRRT), baseline Cr level was 0.83 mg/dL, pre-CMS Cr level was 1.17 mg/dL, and post-CMS Cr level was 1.34 mg/dL. Conclusion: CMS can be administered without signs of nephrotoxicity for a certain period (approximately 1 week), it can be used relatively safely for 2 weeks. Application of CMS is a reasonable option for treating infections caused by multi-drug resistant gram-negative bacteria in patients with major burns. The caution should be exercised nevertheless.

Trends in Pathogen Occurrence and Antimicrobial Resistance of Urinary Isolates in a Tertiary Medical Center over Ten Years: 2004~2013

  • Hong, Seung Bok;Yum, Jong Hwa;Kim, Yong Dae;Shin, Kyeong Seob
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.84-91
    • /
    • 2015
  • To provide guidelines for the empirical treatment of urinary tract infections, we observed annual changes in the occurrence frequency and antimicrobial susceptibility of urinary isolates in a university hospital in the Chungbuk province, South Korea, over a period of 10 years (2004~2013). Escherichia coli (38.2%), Enterococcus faecalis (11.7%), Klebsiella pneumoniae (7.3%), Pseudomonas aeruginosa (4.3%), E. faecium (4.3%), and Staphylococcus aureus (4.1%) were commonly isolated urinary pathogens. The prevalence of E. coli, E. faecium and Streptococcus agalactiae were significantly higher in females (P < 0.001), whereas E. faecalis, P. aeruginosa and S. aureus were significantly more common in male patients (P < 0.001). E. coli mostly frequently showed resistance to ampicillin (67.94%), followed by trimethoprim/sulfamethoxazole (36.06%) and ciprofloxacin (26.84%). Over the studied time period, resistance rates of E. coli to ciprofloxacin significantly increased (20.44% to 33.55%). Moreover, extended-spectrum $\beta$-lactamase (ESBL) producing isolates also significantly increased in E. coli (4.2% to 18.3%) and K. pneumoniae (9.6% to 26.9%). In addition, the proportion of vancomycin-resistant Enterococcus facium (VRE) also increased (15.7% to 25.0%). In conclusion, over the last 10 years, the proportions of ciprofloxacin resistant E. coli and multidrug-resistant bacteria, such as ESBL and VRE have significantly increased. This trend must be strictly controlled and demonstrates the need for more updated guidelines for the treatment of urinary tract infections.

Synergistic Effect of Brazilein in Combination with Hygromycin-b against Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 Brazilein 혼합에 따른 항생제 Hygromycin-b의 상승효과)

  • Lee, Young Seob;Lee, Dae Young;An, Tae Jin;Lee, Jeong Hoon;Ahn, Young Sup;Cha, Seon Woo;Mun, Su Hyun;Kang, Ok Hwa;Kwon, Dong Yeul;Han, Sin Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.504-509
    • /
    • 2014
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a substantial contributor to morbidity and mortality. In search of a natural products capable of inhibiting this multidrug resistant bacteria, we have investigated the antimicrobial activity of brazilein (BRZ) isolated from Caesalpinia sappan L. (Leguminosae) against 8 different strains of Staphylococcus aureus (S. aureus). New antimicrobial activity was found using the minimum inhibitory concentrations (MICs), broth dilution as well as checkerboard method. Against the 8 strains, the minimum inhibitory concentrations of BRZ were in the range of $62.5-500{\mu}g/mL$. From those results we performed the checkerboard test to determine the synergism of BRZ in combination with Hygromycin-b (HgB) against 4 strains. The combined activity of BRZ and HgB against 4 strains resulted in a fractional inhibitory concentrations index (FICI) ranging from 0.18-0.5. The effect of BRZ with HgB was found to be synergistic. We found that BRZ reduced the MICs of HgB. BRZ and HgB could lead to the development of new combination antibiotics against MRSA infection.

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Antibacterial Effect of Various Fermentation Products and Identification of Differentially Expressed Genes of E.coli (다양한 발효액의 항균효과와 대장균의 유전적 변화에 미치는 영향)

  • Heo, Jihye
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical opportunistic pathogens. Moreover, these bacteria are known to possess multidrug-resistant (MDR) properties. This study investigates the antimicrobial activity of six fermented products, which have varying efficacies against P. aeruginosa, E. coli, and S. aureus. To identify novel candidate genes, differential expression analysis was performed using an annealing control primer. In the disk diffusion method, Fig vinegar (FV) and Diospyros kaki Thunb vinegar (DTV) showed the greatest increase in inhibition compared to other fermented products, whereas fermented Korean traditional nature herb (FKTNH) had no antibacterial effect. This study identified down-regulation of Escherichia coli O157:H7 ompW gene for outer membrane protein W, whereas gene for synthetic construct Lao1 gene for L-amino acid oxidase were up-regulated in E. coli treated with 5% FV. Consuming fermented vinegar helps prevent bacterial infections. Especially, FV and DTV are potentially useful alternative natural products for multidrug resistance. Furthermore, both are expected to be used as effective natural antimicrobial agents, such as disinfectants.

Antioxidant Activity of Native Korean Halophyte Extracts and Their Anti-biofilmActivity against Acinetobacter baumannii (한국 자생 염생식물 추출물의 항산화 활성 및 다재내성 Acinetobacter baumannii에 대한 항생물막 활성)

  • Eun Seong Lee;Jeong Woo Park;Ki Hwan Moon;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1015-1024
    • /
    • 2023
  • Antibiotics have greatly contributed to the treatment and prevention of bacterial diseases in humans, animals, and fish. However, antibiotic misuse has led to the emergence and spread of multidrug-resistant bacteria. In addition to antibiotic discovery research, efforts are being made to combat such multidrug-resistant bacteria using antimicrobial agents, antioxidants, host immune enhancement, probiotics, and bacteriophages, as well as various symptomatic therapies. To discover novel bioactive compounds, it is crucial to adopt approaches that incorporate fresh ideas, new targets, innovative techniques, and untapped resources. Halophytes are plants that grow in high-salt soils and are known to adapt to salt-induced stress through unique metabolic processes that produce secondary metabolites. This study aimed to investigate the effects of extracts of halophytes native to Korea on oxidative stress and to determine whether they exert inhibitory activity against biofilms, which are major pathogenic factors of infectious bacteria. The Acinetobacter baumannii strain ATCC 17978, a representative drug-resistant bacterium, was used to measure anti-biofilm activity. The results showed that Aster spathulifolius, Carex kobomugi, Rosa rugosa, and Asparagus cochinchiensis exerted strong antioxidant and anti-biofilm effects without affecting bacterial growth itself. The halophytes used in this study are promising candidates for the development of pharmaceutical agents with antioxidant and antimicrobial properties.