DOI QR코드

DOI QR Code

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Received : 2011.07.13
  • Accepted : 2011.09.26
  • Published : 2012.01.28

Abstract

The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Keywords

References

  1. Bakar, A. F., A. S. Abdulamir, T. S. Yoke, and N. Nordin. 2010. Detection and quantification of probiotic bacteria using optimized DNA extraction, traditional and real-time PCR methods in complex microbial communities. Afr. J. Biotechnol. 9: 1481-1492. https://doi.org/10.5897/AJB09.1322
  2. Bolton, D. J. 2011. Verocytotoxigenic (Shiga toxin-producing) Escherichia coli: Virulence factors and pathogenicity in the farm to fork paradigm. Foodborne Pathog. Dis. 8: 357-365. https://doi.org/10.1089/fpd.2010.0699
  3. Cross, A. S., K. S. Kim, C. D. Wright, J. C. Sadoff, and P. Gemski. 1986. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J. Infect. Dis. 154: 497-503. https://doi.org/10.1093/infdis/154.3.497
  4. Davis, L. G., M. D. Dibner, and J. F. Battery. 1986. In: Basic Methods in Molecular Biology, pp. 135-150. Elsevier Science Publishing Co. Inc., New York.
  5. CDC. 2011. Investigation update: Outbreak of Shiga toxinproducing E. coli O104 (STEC O104:H4) infections associated with travel to Germany. Available at http://www.cdc.gov/ecoli/2011/ecoliO104/index.html. Accessed on 2nd July, 2011.
  6. Emody, L., M. Kerenyi, and G. Nagy. 2003. Virulence factors of uropathogenic Escherichia coli. Int. J. Antimicrob. Agents 22: 29-33. https://doi.org/10.1016/S0924-8579(03)00236-X
  7. Grotiuz, G., A. Sirok, P. Gadea, G. Varela, and F. Schelotto. 2006. Shiga toxin 2-producing Acinetobacter haemolyticus associated with a case of bloody diarrhea. J. Clin. Microbiol. 44: 3838-3841. https://doi.org/10.1128/JCM.00407-06
  8. Guardabassi, L., A. Dalsgaard, and J. E. Olsen. 1999. Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J. Appl. Microbiol. 87: 659-667. https://doi.org/10.1046/j.1365-2672.1999.00905.x
  9. Health Protection Agency. 2007. Identification of Shigella species. National Standard Method BSOP ID 20 Issue 2. Available at http://www.hpa-standardmethods.org.uk/pdf_sops.asp. Accessed 7th June 2011.
  10. Iroha, I. R., A. E. O. Ji, and C. O. Esimone. 2008. Antimicrobial resistance pattern of plasmid-mediated extended-spectrum $\beta$-lactamase producing strains of Escherichia coli. Sci. Res. Essay 3: 215-218.
  11. Jones, R. N., W. A. Craigc, P. G. Ambrose, M. N. Dudley, and S. Pottumarthy. 2005. Reevaluation of Enterobacteriaceae MIC/ disk diffusion zone diameter regression scattergrams for 9 hlactams: Adjustments of breakpoints for strains producing extended spectrum $\beta$-lactamases. Diag. Microbiol. Infect. Dis. 52: 235-246. https://doi.org/10.1016/j.diagmicrobio.2005.02.006
  12. Konig, B., W. Konig, J. Scheffer, J. Hacker, and W. Goebel. 1986. Role of Escherichia coli alpha-hemolysin and bacterial adherence in infection: Requirement for release of inflammatory mediators from granulocytes and mast cells. Infect. Immun. 54: 886-892.
  13. NARMS. 2004. The US National Antimicrobial Resistance Monitoring System Reports. http://www.ars.usda.gov/Main/docs.htm?docid:6750. Accessed 17th November 2009.
  14. National Committee for Clinical Laboratory Standards. 2005. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; 15th Ed. Approved standard (M100-S15). NCCLS, Wayne, PA.
  15. National Nosocomial Infections Surveillance (NNIS) System Report. 2000. Data summary from January 1992-April 2000. Am. J. Infect. Control 28: 429-448. https://doi.org/10.1067/mic.2000.110544
  16. Obire, O., D. C. Tamuno, and S. A. Wemedo. 2005. Bacteriological water quality of Elechi Creek in Port Harcourt, Nigeria. J. Appl. Sci. Environ. Mangt. 9: 79-84.
  17. Park, S. Y., K. M. Kim, J. H. Lee, S. J. Seo, and I. H. Lee. 2007. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect. Immun. 75: 1861-1869. https://doi.org/10.1128/IAI.01473-06
  18. Perilla, G., G. M. S. Agello, C. M. S. Bopp, J. Elliot, R. Facklam, J. S. Knapp, et al. 2003. Manual for laboratory identification and antimicrobial susceptibility testing of bacterial pathogens of public health importance in the developing world, pp. 103-139. WHO.
  19. Podar, M., C. B. Abulencia, M. Walcher, D. Hutchison, K. Zengler, J. A. Garcia, et al. 2007. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73: 3205-3214. https://doi.org/10.1128/AEM.02985-06
  20. Raksha, R., H. Srinivasa, and R. S. Macaden. 2003. Occurrence and characterization of Escherichia coli in urinary tract infections. Indian J. Med. Microbiol. 21: 102-107.
  21. Ramteke, P. W. and S. Tewari. 2007. Serogroups of Escherichia coli from drinking water. Environ. Monit. Assesst 130: 215-220. https://doi.org/10.1007/s10661-006-9390-7
  22. Ranjan, K. P., N. Ranjan, A. Chakraborty, and D. R. Arora. 2010. An approach to uropathogenic Escherichia coli in urinary tract infections. J. Lab. Phys. 2: 70-73.
  23. Roy, M. R., B. Anne-Marie, T. Marija, R. B. Vicki, R. Jacinta, O. Frances, et al. 2004. Escherichia coli and communityacquired gastroenteritis, Melbourne, Australia. Emerg. Infect. Dis. 10: 1797-1805. https://doi.org/10.3201/eid1010.031086
  24. Russo, T. A., N. R. Luke, J. M. Beanan, R. Olson, S. L. Sauberan, U. C. MacDonald, et al. 2010. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect. Immun. 78: 3993-4000. https://doi.org/10.1128/IAI.00366-10
  25. Seifert, H., R. Baginski, A. Schulze, and G. Pulverer. 1993. Antimicrobial susceptibility of Acinetobacter species. Antimicrob. Agents Chemother. 37: 750-753. https://doi.org/10.1128/AAC.37.4.750
  26. Sharma, S., G. K. Bhat, and S. Shenoy. 2007. Virulence factors and drug resistance in Escherichia coli isolated from extraintestinal infections. Indian J. Med. Microbiol. 25: 369-373. https://doi.org/10.4103/0255-0857.37341
  27. Shukla, I., R. Tiwari, and M. Agarwal. 2004. Prevalence of extended spectrum $\beta$-lactamase in a tertiary care hospital. Indian J. Med. Microbiol. 22: 87-91.
  28. Tarawneh, K. A., N. M. Al-Tawarah, A. H. Abdel-Ghani, A. Al-Majali, M. Ahmed, and K. M. Khleifat. 2009. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. J. Basic Microbiol. 49: 310-317. https://doi.org/10.1002/jobm.200800060
  29. Thurlow, L. R., V. C. Thomas, S. Narayanan, S. Olson, S. D. Fleming, and L. E. Hancock. 2010. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect. Immun. 78: 4936-4943. https://doi.org/10.1128/IAI.01118-09
  30. WHO. 2002. Water for Health enshrined as a human right. Available at http://www.who.int/mediacentre/news/releases/prl/en. Accessed 1st September 2010.
  31. Wilson, J. W., M. J. Schurr, C. L. LeBlanc, R. Ramamurthy, K. L. Buchanan, and C. A. Nickerson. 2002. Mechanisms of bacterial pathogenicity. Postgrad. Med. J. 78: 216-224. https://doi.org/10.1136/pmj.78.918.216

Cited by

  1. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata vol.141, pp.3, 2012, https://doi.org/10.1016/j.jep.2012.03.051
  2. Co-Detection of Virulent Escherichia coli Genes in Surface Water Sources vol.10, pp.2, 2012, https://doi.org/10.1371/journal.pone.0116808
  3. 대장균의 항균제 내성과 독력 유전자의 분석을 활용한 융합기술연구 vol.6, pp.5, 2012, https://doi.org/10.15207/jkcs.2015.6.5.077
  4. Evaluate the frequency distribution of nonadhesive virulence factors in carbapenemase-producing Acinetobacter baumannii isolated from clinical samples in Kermanshah vol.7, pp.1, 2012, https://doi.org/10.4103/0976-9668.175071
  5. Occurrence of multidrug resistant Escherichia coli in groundwater of Brij region (Uttar Pradesh) and its public health implications vol.10, pp.3, 2012, https://doi.org/10.14202/vetworld.2017.293-301