• Title/Summary/Keyword: Multicomponent analysis

Search Result 80, Processing Time 0.029 seconds

Multicomponent analysis of metabolites of low volatility in biological fluids by field ionization mass spectrometry

  • Kim, Kyoung-Rae;Anbar, Michael
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1984
  • An improved mass spectrometric method for multicomponent analysis of metabolites in urine, well-suited for clinical biochemistry, is described. The method involves solvent elution of the metabolites from an adsorbent and the concentration of the eluate on a microadsorption column. This is administered by a direct inlet probe into the ionizing source of field ionization mass spectrometry (FIMS), which yield a molecular weight profile of the metabolites. The procedure provides rapidly (within one hour) reproducible profiles from a small volume of urine. The optimization of the sampling technique and the reproducibility are discussed.

  • PDF

SEC/Light Scattering Analysis of Multicomponent Polymer Systems

  • 이희정;장태현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.648-653
    • /
    • 1996
  • We have shown several examples of characterization of multicomponent polymer systems by size exclusion chromatography coupled with a light scattering detector. Although SEC cannot provide a complete information for such systems due to its intrinsic limitation, one can extend its capability by combining multiple detection in order to get relevant information to some extent.

An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석)

  • Lee, Bang Weon;Park, Kyong Soon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Polarization Filters Using the Multicomponent Complex Trace Analysis (다성분 복소트레이스를 이용한 분극필터)

  • Kim, Ki-Young;Lee, So-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.89-94
    • /
    • 2006
  • In order to increase the signal-to-noise ratio in multi-component seismic data, we developed new polarization filters based on the method of multicomponent complex trace analysis. Unlike the previous polarization filters, the present filters separately compute linear and elliptic components at each time sample using amplitude ratio of horizontal and vertical components of body waves and ellipticity of Rayleigh waves. The polarization filters work ideally even with low S/N data. Application of the filters to both synthetic and real seismic data shows that Rayleigh waves of elliptic motions are effectively eliminated and both P and S waves of linear motions are well separated each other.

  • PDF

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.