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ABSTRACT

A multidimensional finite element code is developed for the integrated groundwater model in the companion
paper, with provisions for complex transport and transformation processes. The FORTRAN code with dynamic array
allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector
facility, Unix orkstations and PCs, for one-, twoand three-dimensional problems. To reduce the computation time and
storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vec-
tor and parallel processing on the IBM 9000. To avoid the numerical osciilations of the nonlinear problems in the case of
convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter
evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied. The model is
highly structured to facilitate the inclusion of the additional constitutive and reaction equations. The model can simulate
the transport and transformation of a complex mixture of groundwater contaminants (e.g., a mixture of light and heavy
hydrocarbons, water-born contaminants and volatile contaminants). To demonstrate the model's robustness, several hy-
pothetical problems, from traditional groundwater flow to multicomponent multiphase flow, are simulated through pa-
rameter substitution. The cases presented are unsaturated flow through an embankment, one-, two-, three-dimensional
multiphase flow, and three dimensional composite multiphase TCE migration. Parameter dependency and sensitivity of

the model are analyzed with respect to the boundary conditions, the fluid conductivity, and the magnitude of contaminant
source.

INTRODUCTION

The accompanying paper [Kim and Stenstrom, this issue] reviewed previous literature on composite
groundwater modeling and developed an integrated groundwater model using a compact notation. This paper describes
a numerical method to solve the governing equations, which is broadly applicable to a variety of problems and
computing plat forms. A brief review of previous groundwater modeling efforts is presented to provide background and
support as follows: 1) finite difference models, 2) finite element models, 3) front tracking models including the Eulerian-
Lagrangian method, 4) boundary element models, 5) analytical solutions, and 6) vector and parallel processing. The de-
veloped numerical model is verified for a broad range of system parameters, using literature data. Extensive parameter
and experimental studies are in preparation, and will be presented later.

NUMERICAL ANALYSIS

The comprehensive governing equation of the integrated model was presented as follows [Kim and Stenstrom,
this issue] :

3 3
& & all 5
Z[Z(Pp‘dpspgpa)—aq‘*ﬁ’uw;f"‘ﬂaﬂa‘—a—]*'g((l"f)ﬁwa
a=1| f=1

3

-Z[V(p..‘!,x.{vmZw—“i]}vusao‘,,vwa#a))u?.,(lg+g:,)} ()

a=1
To solve the equation (1), the weighted residual form is derived by applying the asymmetric weighting function #; and
integrating over the spatial domain as shown in equation (2).
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Due to the complex form of equation (2), integrated clement matrices are defined as follows :
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where, N, is basis function of node j, #; is weighting function of node i, id, jd are indices for spatial directions ( 1=x,
2=y, 3=z ). The basis function only depends upon the geometry of each clement; therefore, the evaluation of the basis
function needs to be performed only once, which greatly reduces computation time. All the basis functions are evaluated
at all Gaussian points and later assembled when the integration of element matrices is performed. By mapping, the inte-
gration is performed in the local domain. The linear basis functions in each direction are combined to derive the multi-
dimensional bilinear basis functions. Asymmetric weighting functions are developed from the basis function by adding
asymmetric weighting terms [Huyakorn and Nikuha, 1979]. Numerical integrations is implemented at Gaussian points.
Thus, nodal parameter values should be changed to element-wise parameter values using the basis function ¥, ;, at
Gaussian point ig.
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Where, i is nodal number index, and ng is total number of Gaussian points in each element.
Applying the integrated element matrices, element-wise parameters, and Green's theorem, the weighted residual equa-
tion is discretized as follows :
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where, nel is total number of elements, nd is dimension of the problem, nn is total number of nodes in each element, and
na is total number of phases excluding soil phase.

Total boundary loads of advective and dispersive mass flux are as follows :
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where, th(= —paw‘dKa(Vha +-}’;—:j)~ﬁ) is outward normal advective flux , and o/, ,(=—#5.D] V(p,W,)-7) is outward normal

dispersive flux.
Combining the generalized finite difference algorithm along time domain provides the final form of the finite element
analogue of the integrated transport equation, as follows :
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where, € is time weighting factor. The boundary flux is integrated as follows using the multidimensional basis func-
tions as follows :
b
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where, ib is boundary nodal number, nbistotalnumbcrofboundarynodes,andf;” is dispersive boundary load.
To solve the above system with respect to the pressure, samrauonandmassﬁacuonterms,theassembledglobalmatnx
and load vector of species i in @ phase are represented as follows :

[Ah.’,1=ZZ[EIWUJZmﬂ,w;"+ZZ{4ED~JWMJ,,K¢)7'}] ©n
< 7 “'a
(A= 3> (B Khoal 1} ©2
. J
1Am;1=22[§[w;.,xm.-v.)j"+ZZ{4mu,..,m..s.,D:,);*‘}] ©3
e J i yd

(ﬂhZZ{{ﬁle A CavSgal}+ D D (5= xxEDu.ﬂ.i.jxpav/fa)"}vhm "
« J ) d jd

-Z{Z{[mc,.w(p.,#,xf:)/}»«[muJ«S.(IL ) ,]— j'Wu,q:, 4B - j'm{, A 4

J LA
U¢)=ZZ[Z‘7(MJM,~{,);(S.,JY'] ©5
¢ J

.
(fmj,)=ZZ[E(M,,1(%»’,)';(SM)"+§;;_‘,(s—lxxou.,-d.;,,masaof,)"}(w{,,,)" ©.6)
e J

Using the above notation, equation (7) becomes
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To reduce the computation time and to minimize the difficulties associated with the nonlinear terms, a decou-
pling technique is applied. The decoupling technique depends upon the property of each primary variable and is case
specific. As an example, the governing equations of TCE migration are reduced to simplified forms with immobile air
phase assumption, as follows :
The equation for water phase pressure head becomes : .
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The equation for oil phase pressure head of TCE becomes :
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The equation for mass fraction of TCE component inathe water phase becomes :
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The element matrices were assembled in a banded form so that an asymmetric banded matrix solver can be
used, which also reduces storage requirements for the variables. The assembled global matrix of three dimensional FEM
is at least two orders of magnitude larger than two dimensional case; thus, an efficient matrix storage scheme and ma-
trix solver are required. Either an asymmetric band matrix solver or a vector matrix solver [Pelka and Peters, 1986] for
vector processing can be used. In this study, the Doolittle method was used for an asymmetric matrix solver [Pinder and
Gray, 1977].

The system of equations is very dependent npon the component equations. To avoid a system of nonlinear alge-
braic equations, the nonlinear terms at the new (unknown) time level must be estimated. It is common practice to use
the values of the nonlinear terms from the old time level. Iteration continues until the error criteria (difference of
A7, W and wi*1, wl") s satisfied.  After each iteration, the computation proceeds to the next time level. Careful selec-
tion of the step size for space and time, and proper initial conditions, are required to reduce the instability problems re-
lated to nonlinearities [Abriola and Rathfelder, 1993]. To overcome the instability problems, it is necessary to use vari-
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able time and spatial step sizes [Cooley, 1983]. The variable time step can be determined from the truncation error. The
variable spatial step size requires the algorithm to find the sharp advancing front. The gradient of the concentration can
indicate the presence of a sharp advancing front. Near this Jocation, a smaller step size is required. In this study, mass
lumping, upstream weighting, variable time step, advanced iteration techniques, and element-wise evaluation of parame-
ters are used to avoid stability problems. If we construct the nodal points relations of cach element in a fashion similar to
the FDM, we can apply the methodology developed by Karplus [1958] to insure a stable solution. To provide a simple
explanation, a stability analysis of a one-dimensional problem is implemented. Two- and three-dimensional cases and
different basis functions, such as quadratic or Hermitian polynomials, can also be analyzed by expanding the following
finite element analogue :
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Rearranging each term of the above equation in the form of ¢)*'-Cf", the summation of all the coefficients

should be less than 0 to satisfy the stability criteria.
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Where, C, =¥ /(x/ as)is the Courant number, and £, =¥ /(D/ Ax)is the local Peclet number.

Because the system can be interpreted as the moving coordinate by the velocity component of the total
derivative, the migration distance by convective flux should be within the already defined analogue. Therefore,
v{(ax/ Ar), which is same as C,(1.

The above FEM algorithm is very similar to the finite difference algorithm except for the time derivative, which
is evaluated at three different spatial points with the weighting factors 1, 4, and 1. Applying the above technique to the
generalized finite difference analogue, the stabllity condition of generalized FDM is as follows :

DA! _E
<ﬁl 7 a4
The analogue of forward FEM and FDM is shown in Figure 1.

SIMULATION OF SPECIFIC PROBLEMS
1. Unsaturated Groundwater Flow

To demonstrate the robustness of the model to handle nonlinear problems, steady state drainage through an em-
bankment was simulated [Cooley, 1983]. If capillary pressure is the dominant force of the system, then governing
equation is simplified to equation (25) in Kim and Stenstrom [this issue]. And the problem was solved by the control pa-
rameters, such as the number of phases and dimensions, saturation values, and the mass fraction coefficients. The prob-
lem domain and data are shown in Figure 2 and Table 1.

The main difficulty of this simulation was the location of the unknown seepage height, which was determined
using a moving, first-type boundary condition. Cooley's scheme [1983] was used to find the location. 175 iterations
were required to satisfy the error criteria of 0.01 m. As shown in Figure 3, the result matches well with the results of
Huyakorn et al. [1986]. ,

2. Multiphase Flow System

If capillary pressure is the dominant force, then the governing equations for multiphase flow system are stated
in (34.1) and (34.2).{Kim and Stenstrom, this issue]. By setting the number of dimension of the code as 1, 2, and 3, and
mass fraction value of each phase as 0, the multidimensional capability of the code is displayed for multiphase flow.
Problem domain and data are shown in Figure 4, and results are shown in Table 1. The accuracy of the model was veri-
fied by comparing the results of one-, two-, and three-dimensional problems for the case of zero flux boundary
conditions. All three results show good agreement.

To observe the parameter dependency of the model in two-dimensional multiphase flow, the fluid conductivity
was changed for several hypothetical cases. Problem domain and data are shown in Figure 5. As shown in Figure 6, the
increased fluid conductivity enhanced the mobility of the phases at roughly one-to-one rate. The spatial derivative of
fluid conductivity, dispersivity, velocity act like an advective flux, and numerical oscillation becomes a problem when the
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spatial gradient of parameters is large, which causes convergence problems in the nonlinear iteration technique. The
relative permeability depends upon the saturation; therefore, if the change of saturation is large, the relative permeability
also causes a convergence problem. To insure rapid convergence, the residual saturation must be restricted. A value of
0.2 was used in this study. leoonshnthmdpnsancbwndaryausasafomgpmeﬁomthebwndary The river
boundaryofthemterphaseslowedthedownwmdmxmuonofthcoﬂphase,andthcresuﬂhngsatumuonpmﬁleofﬂle
oil phase is different from the conceptual model in Figure 6.

If the second-type boundary condition for the water phase flow is applied, the result of TCE migration is identi-
cal to conceptual model, as shown in Figure 7. The boundary condition should be selected carefully with respect to the
location and characteristics. The best choice in this study seems to be the first-type, river boundary condition for the left
side, and the second-type, flux boundary condition for the right side far away from contaminant source. Additional
sensitivity analysis was implemented in the three-dimensional simulation of TCE for the boundary type, location, and the
size of influx.

3. Composite Multiphase Contaminant Migration

Oil phase migration of a local contamination problem is slower relative to the case of an oil recovery problem.
Thus, the capillary dominant approach is used. In composite multiphase flow, primary variables are pressure head and
saturation, as shown in equation (22) of the accompanying paper [Kim and Stenstrom, this issue]. The result of satura-
tion migration is shown in Figure 7.

In composite multiphase contaminant transport, the primary variables are the mass fraction of water and oil
species in the water phase, as shown in equation (32) of the companion paper [Kim and Stenstrom, this issue]. The mi-
gration of mass fraction is shown in Figure 8 for two cases : (1) first-type boundary condition and large vertical fluid
conductivity case, (2) second-type boundary condition and isotropic fluid conductivity case. As shown in Figure 8, the
dissolved mass fraction of TCE is significant, which confirms empirical field observations that suggest transport of such
compounds must be solved using a composite multiphase approach. Both the dissolved and immiscible TCE pose envi-
ronmental problems. Since the water phase velocity is small compared to the velocity of the oil phase, the advective

mass fraction flux does not cause a stability problem, and the movement of mass fraction depends upon the dispersive
flux.

4. Three-Dimensional Simulation of TCE

Large scale three-dimensional simulations were implemented for TCE leacheate from a hazardous landfill site
to verify the integrated model against two-dimensional case using zero flux boundary condition along z direction. Three-
dimensional grids are shown in Figure 9. The results of saturation migration are shown in Figure 10 for the same data
as in two-dimensional problem with no flux boundary condition along z direction. The slight difference between Figures
7 and 10 is due to the plotting method, but the numerical results are identical for both case. Sensitivity analyses are im-
plemented with respect to the characteristics (Figure 11), the location of boundary conditions (Figure 12), the magnitude
of the contaminant source (Figure 13) and the clement size (Figure 12). As shown in Figure 11, the constant head pres-
sure of the river boundary and inflow and outflow water fluxes acts as a forcing pressure from the boundary, hampering
the downward migration of the oil phase. The apparent influence of the water inflow from the right side boundary is
shown in Figure 11 and 13. Figure 12 shows the scale dependency of the model ; the location of boundary condition has
little effect upon the solution of the problem, which implies the applicability of moving boundary element method to
NAPL problems {Stothoff and Pinder, 1992]. Increased size of the contaminant source slightly extends the migration
profile along the horizonta! direction. As shown in Figure 13, a 500% increase in the magnitude of contaminant source
extends the TCE migration by approximately 250%.

The time-dependent migration patterns of TCE concentration in the water phase are shown in Figure 14 for the
problem of (2) in Figure 13. The simulation is implemented for the unstable condition of the pressure head and the flow
of each phase, caused from the river aud source boundary condition to verify the model's stability criteria. Figure 12
shows no distinct unstable solution fluctuations.

CONCLUSIONS
A comprehensive finite element model was developed to solve the nonlinear transport and constitutive equations
of the integrated groundwater model using multidimensional bilinear elements. The system of equations becomes singu-

lar at the interfacial region between different phases. To overcome this problem, hypothetical non-zero values of the
saturation derivative and relative permeability are required for capillary dominant case. In this study, a saturation de-
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rivative ranging from 10~*to 165 was required. Steep spatial gradieats of fluid conductivity and relative permeability
cause greater numerical error, which requires more iterations, smaller time steps and spatial increments to control.

The model is sensitive to the initial conditions of pressure head, saturation and mass fraction [{Abriola and Rathfelder,
1993). The rate of convergence is highly dependent upon the proper set of initial conditions. Due to the dependency of
the saturation upon capillary pressure head, the constitutive equation between saturation and capillary head also effects
the rate of convergence.

Contrary to many existing hypothetical simulation results, the first-type boundary conditions cannot be used to
obtain results similar to the conceptual model. This is due to the fact that there should be a enough pressure build up of
the oil phase to plunge downward to overcome the capillary pressure between the water and oil phases. For the field
problems, it is appropriate to set the first-type boundary conditions far away from the contaminant source, or to use the
second-type boundary conditions if there is no first-type boundary near.

Even though it was difficult to thoroughly optimize the code for vector processing due to the severe
nonlinearities and the recursive relations among processes, the vectorization gave excellent results. The computation
time after vectorization was only one third of the time required for scalar processing. The following programming tech-
niques were used to facilitate vectorization.

1. The dimension of all arrays was defined in descending order ( A(np,ne,na), where np > Ne>na).

2. About 80% of the computation time was spent in the evaluation of the element matrices. Therefore, the element matri-
ces were evaluated over the whole domain, not over the each element, and assembled later. This facilitates vectorization,
but increases the storage requirements.

3. In the case of multiple DO-loops, the inner-most DO-loop was for the largest array.

4. The recursive variables were evaluated outside of the DO-loops by using redundant variables.

The techniques presented in this study are very dependent upon the parameter values used in the simulation.
Since many of the required parameters have never been measured in an actual groundwater basin, it is difficult to postu-
late the appropriate value and range of parameters. Large spatial gradients of fluid conductivity and relative
permeability causc greater numerical error, which requires more iterations, smaller time steps and spatial increments,
and more computation time. More extensive parameter analyses are in preparation and will be presented later in series
papers.
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Table 1. Data of ated scepage flow, p

flow, and posil itiph i transport.
Parametcrs [T Aultidimenss < VIS
Flow Multi Flow Contaminant Traasport
Thysical Data -
saturaled Ko [ 001 miday 1.008 mvday 0.5 mvday
| conductivity -
pressure head h, 00m 00m 00m
of air phase N
residust S |02 02 02
salurntion Sq 2 0.2
docivt o |57 Mo | Uieaeh® W +{Geten))™
saturation
water for hyn >0 for heu >0 for hy >0
O, = 0.5623 g =52 Ope=52
n=4 n=dm=l-l/n na=d4m=1l-1ln
effective s [Ty 11 H(Caehiea))™
:.f"l"'“"" o for ey > 0 for Ry > 0
{ oll + air phase ) Coo= 11, Geu = 9.9 Cpe®= 11, g = 9.9
a=dm=1.Un asdm=xl-1ln
vater saturstion |5, |5ty ScuB'y |SprtGre SS's | Seqten Spu)S's |
ol ucstion 5, SctGuSal'Se | Sut(SuSa)'(Se
alr saturation S, 1-8 1-8
water relative |k | e)” [ a7
permenbility med a1 g2 11 =
ol relative ke ey 106" Nl (S )h;(m:s‘. '
permenbllity TNl Q)M )
Numerical Daia
patial step size Axmfy=lm Axe2 Ay=2, Azs=2m | variebie size
erver criteria 091 m lm a0l m
weighting factor Tgae0-1, g 068 | gy = 0.1, (o = 0.68 G = 0.1, Loy = 0.68

Table 2. Data of mullidimensional multiphase flow, snd compasite
multiphasc contaminant transport.

Pacameters Multidimensionat Composite Multiphase
Multiphase Flow Contaminant Transport ]
Physical Duta
fongitudinal 2, =0.5574, 2, = 0.2784, 8, = 1.00M
solubility limit Hy 1100 ppm
vacostyeatio |, |05 [
density ratie Pre 12 1.2
initisl conditions 1-dim: hy=2-x,h,=h, 0.3 unsatursted region: A=, -y, he=h,+ |
2-dim: hyal-yheh, 03 saturated region: hyxH,-y, hoe by -1
3-dim: hy =2y h=h, 0.3 H, : height of initial groundwater table
bouadary 1-dim: xmO:h, =y, b nh, -1
conditions at x 0, h, =2,(3h,)/(3n) =0, xxd:h =2y, hyuhy-1
at x =4, h=0.01,(dh,)/(3n) =0
2-, 3-dim:
at y=0,b, =2, (30)/(3n) =0,
at y =4, hy=0.01,3h.)/(On)=0

Table 3. Muoitidi ional multiphasc flow results of TCE.

x=0 x=¢ x=0 x=0 x=2 x=2 x=2

Idim. {2-dim. |3-dim. |3-dim. |2-dim. |3-dim. [3-dim.

z2=9 z=0 z=0 =2 z=0 2=0 z=2

Time=] 0.01 .01 0.01 0901 0.01 0.01 0.01

y=2 | 0.20 0.20 0.20 0.20 0.20 0.20 0.20

y=0 § 020 0.20 0.20 0.20 0.20 0.20 0.20

Tine = [0.0504 ]0.0504 {0.0504 |0.0504 |0.0504 |0.0504 |0.0504

y=4 1 0.7 0.77 0.77 .77 0.77 0.77 0.77

y=2 ] 021 0.23 027 0.27 023 0.27 0.27

Time = | 0.1074 }0.1074_10.1074 ] 0.1074 | 0.1074 |0.1074 ] 0.1074

.77 0.77 0.77 0.77 .77 0.77 0.77

y=4
y=2 | 026 | 033 | 040 [ 040 | 033 | 040 | 040
y=0 | 020 | 020 {020 | 020 [ 020 | 020 | 020
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