• 제목/요약/키워드: Multibody Dynamics

검색결과 261건 처리시간 0.023초

Multibody2003와 2003 ASME DETC의 논문들을 통해본 다물체동역학 연구의 세계적 연구추세 (Recent Trends in Multibody Dynamics Researches reviewed from the papers presented in the Multibody2003 and in the 2003 ASME DETC)

  • 유완석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1714-1717
    • /
    • 2003
  • ECCOMAS Thematic Conference Multibody 2003 was held at IST (Instituto Superior Technico), Lisbon, Portugal from July 1 to July 4. 2003. And MBDV(Multibody Dynamics and Vibration) in the 2003 ASME DETC was held at Chicago, U.S.A. from September 2 to September 6. In this paper, the presented papers in these conferences were reviewed and the trends in the multibody dynamics are summarized. The session titles in these conferences include Flexible Multibody Dynamics, Vehicle Dynamics, Contact, Biomechanics, Real-time Challenges, Spatial manipulator and Control, Multidisciplinary Applications, and Advanced Education. The poster session was also organized for more discussions in the Multibody2003 conference.

  • PDF

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션 (Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane)

  • 함승호;차주환;이규열
    • 한국CDE학회논문집
    • /
    • 제14권4호
    • /
    • pp.261-270
    • /
    • 2009
  • We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델 (A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator)

  • 김성수;손병석;송금정;정상윤
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.83-101
    • /
    • 2016
  • This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS) formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

Multibody Dynamics in Arterial System

  • Shin Sang-Hoon;Park Young-Bae;Rhim Hye-Whon;Yoo Wan-Suk;Park Young-Jae;Park Dae-Hun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.343-349
    • /
    • 2005
  • There are many things in common between hemodynamics in arterial systems and multibody dynamics in mechanical systems. Hemodynamics is concerned with the forces generated by the heart and the resulting motion of blood through the multi-branched vascular system. The conventional hemodynamics model has been intended to show the general behavior of the body arterial system with the frequency domain based linear model. The need for detailed models to analyze the local part like coronary arterial tree and cerebral arterial tree has been required recently. Non-linear analysis techniques are well-developed in multibody dynamics. In this paper, the studies of hemodynamics are summarized from the view of multibody dynamics. Computational algorithms of arterial tree analysis is derived, and proved by experiments on animals. The flow and pressure of each branch are calculated from the measured flow data at the ascending aorta. The simulated results of the carotid artery and the iliac artery show in good accordance with the measured results.

실시간 다물체 차량동역학 소프트웨어 개발 Part II: Matlab GUI와 VR Toolbox를 이용한 전후처리 프로그램 (Development of Real-time Multibody Vehicle Dynamics Software Part II: Preprocessor and Postprocessor Using MATLAB GUI and VR Toolbox)

  • 하경남;정완희;김성수;정도현;탁태오
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.169-175
    • /
    • 2009
  • Real-time multibody vehicle dynamics software has been developed for virtual handling tests. The software can be utilized for HILS(Hardware In the Loop Simulations) and consists of three modules such as a graphical vehicle modeling preprocessor, a real time dynamics solver, and a virtual reality graphic postprocessor for virtual handling tests. In the graphical vehicle modeling preprocessor, vehicle hard point data for a suspension model are automatically converted into multibody vehicle model. In the real time dynamics solver, the efficient subsystem synthesis method is used to create multibody equations of motion for a subsystem by a subsystem. In the virtual reality graphic postprocessor, an animator has been also developed by using Matlab Virtual Reality Toolbox for virtual handling tests.

다물체동력학을 이용한 기계 부품의 피로수명 예측 기술 (Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics)

  • 한형석
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

환편기 편직바늘의 동역학해석 (Dynamic Analysis of the Latch Needle of the Circular Knitting Machine)

  • 정광영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.584-589
    • /
    • 2001
  • The latch needle cam system of circular knitting machines is analysed using multibody dynamics. A formulation is made to obtain the vertical stiffness between the needle and the cam. By implementing this formulation into data of the multibody dynamics program, the motion and the force between the needle and the cam are obtained.

  • PDF

다물체계 해석 방법을 이용한 동력 전달계의 특성 해석 (Analysis on Dynamic Characteristics of Power Transmission System Using Multibody Dynamics)

  • 우민수;공진형;한형석;임원식;박영일;이장무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.476-480
    • /
    • 2003
  • This paper presents an effective method to analyze the dynamic characteristics for the shilling transients of power transmission system using the multibody dynamics, which is composed of subsystem equation, subsystem assemble, and the self-determining technique for the system degree of freedom. Using the advantages of multibody dynamics, the proposed method can be used easily for mathematical models of mechanical systems, such as a power transmission, compared with newtonian method. With this theory, dynamic simulation program was developed. The program can be used to verify system performances, transient phenomena, and other dynamic problems. The simulation of a target system was presented, and its validity was attained by being compared with the previous analysis using newtonian method.

  • PDF