• Title/Summary/Keyword: Multi-view camera

Search Result 160, Processing Time 0.026 seconds

Effects of Running Speed on the Foot Segments Motion at the Stance Phase (달리기 시 속도 증감에 따른 지지국면에서 발 분절 움직임 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2012
  • The aim of the present study was to investigate effect of running speed conditions on the kinematic pattern of the metatarsus, mid-foot, calcaneus. Twenty-two healthy young adults were made to run on treadmill at three different running speeds(normal speed, 9.2; slow speed, 7.4; fast speed, 11.1km/hr.) and the trajectories of the 10 reflective markers for each subject were recorded by an eight-camera motion capture system at 200 Hz. Three-dimensional angles for the foot segment in the support phase during running were calculated according to Euler's technique. Results showed that running speed did not affect the peak of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction or their range of motion for each foot segment. However, when the running speed was fast, significant differences were found in the peak of the plantar flexion, eversion, and adduction and ROM(range of motion) of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction between the foot segments, metatarsus, mid-foot, and calcaneus. It was proposed that the foot segment should be analyzed from a multi-segment system point of view on the basis of anatomical reference during locomotion.

Alignment of Convergent Multi-view Depth Map in Based on the Camera Intrinsic Parameter (카메라의 내부 파라미터를 고려한 수렴형 다중 깊이 지도의 정렬)

  • Lee, Kanghoon;Park, Jong-Il;Shin, Hong-Chang;Bang, Gun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.457-459
    • /
    • 2015
  • 본 논문에서는 원의 호 곡선에 따라 배치된 다중 RGB 카메라 영상으로 생성한 깊이 지도를 정렬하는 방법을 제안한다. 원의 호 곡선에 따라 배치된 카메라는 각 카메라의 광축이 한 점으로 만나서 수렴하는 형태가 이상적이다. 그러나 카메라 파라미터를 살펴보면 광축이 서로 수렴하지 않는다. 또한 카메라 파라미터는 오차가 존재하고 내부 파라미터도 서로 다르기 때문에 각 카메라 영상들은 수평과 수직 오차가 발생한다. 이와 같은 문제점을 해결하기 위해 첫 번째로 광축이 한 점으로 수렴하기 위해서 카메라 외부 파라미터를 보정하여 깊이 영상 정렬을 하였다. 두 번째로 내부 파라미터를 수정하여 각 깊이 영상들의 수평과 수직 오차를 감소시켰다. 일반적으로 정렬된 깊이 지도를 얻기 위해서는 초기 RGB 카메라 영상으로 정렬을 수행하고 그 결과 영상으로 깊이 영상을 생성한다. 하지만 RGB 영상으로 카메라의 회전과 위치를 보정하여 정렬하면 카메라 위치 변화에 따른 깊이 지도 변화값 적용이 복잡해 진다. 즉 정렬 계산 과정에서 소수점 단위 값이 사라지기에 최종 깊이 지도의 값에 영향을 미친다. 그래서 RGB 영상으로 깊이 지도를 생성하고 그것을 처음 RGB 카메라 파라미터로 워핑(warping)하였다. 그리고 워핑된 깊이 지도 값을 가지고 정렬을 수행하였다.

  • PDF

Implementation of Optimized 3D Input & Output Systems for Web-based Real-time 3D Video Communication (웹 기반의 입체 동영상 통신을 위한 3차원 입출력 시스템의 최적화 구현)

  • Ko, Jung-Hwan;Lee, Jung-Suk;An, Young-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.105-114
    • /
    • 2006
  • In this paper, 3D input and output systems for a web-based real-time 3D video communication system using IEEE 1394 digital cameras, Intel Xeon Server system and Microsoft Directshow library is proposed. And some conditions for optimizing the operations of the stereo camera, 3D display and signal processing system are analyzed. Input & output systems are carefully selected, which can satisfy the required optimization conditions and the final 3D video communication system is implemented by using three optimized devices. The overall control system is developed with Microsoft Visual C++.Net and Microsoft DirectX 9.1 SDK. Some experimental results show that the observer can feel the natural presence from multi-view(4-view) 3D video of server system in real-time and also can feel the natural presence from 3D video of client system and finally suggest an application possibility of the proposed web-based real-time 3D video communication in real fields.

An Optimization Method of Measuring Heart Position in Dynamic Myocardial Perfusion SPECT with a CZT-based camera (동적 심근관류 SPECT에서 심장의 위치 측정방법에 대한 고찰)

  • Seong, Ji Hye;Lee, Dong Hun;Kim, Eun Hye;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.75-79
    • /
    • 2019
  • Purpose Cadmium-zinc-telluride (CZT) camera with semiconductor detector is capable of dynamic myocardial perfusion SPECT for coronary flow reserve (CFR). Image acquisition with the heart positioned within 2 cm in the center of the quality field of view (QFOV) is recommended because the CZT detector based on focused multi-pinhole collimators and is stationary gantry without rotation. The aim of this study was to investigate the optimal method for measuring position of the heart within the center of the QFOV when performing dynamic myocardial perfusion SPECT with the Discovery NM 530c camera. Materials and Methods From June to September 2018, 45 patients were subject to dynamic myocardial perfusion SPECT with D530c. For accurate heart positioning, the patient's heart was scanned with a mobile ultrasound and marked at the top of the probe where the mitral valve (MV) was visible in the parasternal long-axis view (PLAX). And, the marked point on the patient's body matched with the reference point indicated CZT detector in dynamic stress. The heart was positioned to be in the center of the QFOV in rest. The coordinates of dynamic stress and rest were compared statistically. Results The coordinates of the dynamic stress using mobile ultrasound and those taken of the rest were recorded for comparative analysis with regard to the position of the couch and analyzed. There were no statistically significant differences in the coordinates of Table in & out, Table up & down, and Detector in & out (P > 0.05). The difference in distance between the 2 groups was measured at $0.25{\pm}1.00$, $0.24{\pm}0.96$ and $0.25{\pm}0.82cm$ respectively, with no difference greater than 2 cm in all categories. Conclusion The position of the heart taken using mobile ultrasound did not differ significantly from that of the center of the QFOV. Therefore, The use of mobile ultrasound in dynamic stress will help to select the correct position of the heart, which will be effective in clinical diagnosis by minimizing the image quality improvement and the patient's exposure to radiation.

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

Model-Based Three-dimensional Multiview Object Implementation by OpenGL (OpenGL을 이용한 모델 기반 3차원 다시점 객체 구현)

  • Oh, Won-Sik;Kim, Dong-Uk;Kim, Hwa-Sung;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.299-309
    • /
    • 2008
  • In this paper, we propose an algorithm for object generation from model-based 3-dimensional multi-viewpoint images using OpenGL rendering. In the first step, we preprocess a depth map image in order to get a three-dimensional coordinate which is sampled as a vertex information on OpenGL and has a z-value as depth information. Next, the Delaunay Triangulation algorithm is used to construct a polygon for texture-mapping using the vertex information. Finally, by mapping a texture image on the constructed polygon, we generate a viewpoint-adaptive object by calculating 3-dimensional coordinates on OpenGL.

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Implementation of Web-based Remote Multi-View 3D Imaging Communication System Using Adaptive Disparity Estimation Scheme (적응적 시차 추정기법을 이용한 웹 기반의 원격 다시점 3D 화상 통신 시스템의 구현)

  • Ko Jung-Hwan;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.55-64
    • /
    • 2006
  • In this paper, a new web-based remote 3D imaging communication system employing an adaptive matching algorithm is suggested. In the proposed method, feature values are extracted from the stereo image pair through estimation of the disparity and similarities between each pixel of the stereo image. And then, the matching window size for disparity estimation is adaptively selected depending on the magnitude of this feature value. Finally, the detected disparity map and the left image is transmitted into the client region through the network channel. And then, in the client region, right image is reconstructed and intermediate views be synthesized by a linear combination of the left and right images using interpolation in real-time. From some experiments on web based-transmission in real-time and synthesis of the intermediate views by using two kinds of stereo images of 'Joo' & 'Hoon' captured by real camera, it is analyzed that PSNRs of the intermediate views reconstructed by using the proposed transmission scheme are highly measured by 30dB for 'Joo', 27dB for 'Hoon' and the delay time required to obtain the intermediate image of 4 view is also kept to be very fast value of 67.2ms on average, respectively.

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF