• Title/Summary/Keyword: Multi-tracer imaging

Search Result 6, Processing Time 0.018 seconds

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

What Is the Problem in Clinical Application of Sentinel Node Concept to Gastric Cancer Surgery?

  • Miyashiro, Isao
    • Journal of Gastric Cancer
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • More than ten years have passed since the sentinel node (SN) concept for gastric cancer surgery was first discussed. Less invasive modified surgical approaches based on the SN concept have already been put into practice for malignant melanoma and breast cancer, however the SN concept is not yet placed in a standard position in gastric cancer surgery even after two multi-institutional prospective clinical trials, the Japan Clinical Oncology Group trial (JCOG0302) and the Japanese Society for Sentinel Node Navigation Surgery (SNNS) trial. What is the problem in the clinical application of the SN concept to gastric cancer surgery? There is no doubt that we need reliable indicator(s) to determine with certainty the absence of metastasis in the lymph nodes in order to avoid unnecessary lymphadenectomy. There are several matters of debate in performing the actual procedure, such as the type of tracer, the site of injection, how to detect and harvest, how to detect metastases of SNs, and learning period. These issues have to be addressed further to establish the most suitable procedure. Novel technologies such as indocyanine green (ICG) fluorescence imaging and one-step nucleic acid amplification (OSNA) may overcome the current difficulties. Once we know what the problems are and how to tackle them, we can pursue the goal.

H1R4: Mock 21cm intensity mapping maps for cross-correlations with optical surveys

  • Asorey, Jacobo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.3-56.3
    • /
    • 2019
  • We are currently living in the era of the wide field cosmological surveys, either spectroscopic such as Dark Energy Spectrograph Instrument or photometric such as the Dark Energy Survey or the Large Synoptic Survey Telescope. By analyzing the distribution of matter clustering, we can use the growth of structure, in combination with measurements of the expansion of the Universe, to understand dark energy or to test different models of gravity. But we also live in the era of multi-tracer or multi-messenger astrophysics. In particular, during the next decades radio surveys will map the matter distribution at higher redshifts. Like in optical surveys, there are radio imaging surveys such as continuum radio surveys such as the ongoing EMU or spectroscopic by measuring the hydrogen 21cm line. However, we can also use intensity mapping as a low resolution spectroscopic technique in which we use the intensity given by the emission from neutral hydrogen from patches of the sky, at different redshifts. By cross-correlating this maps with galaxy catalogues we can improve our constraints on cosmological parameters and to understand better how neutral hydrogen populates different types of galaxies and haloes. Creating realistic mock intensity mapping catalogues is necessary to optimize the future analysis of data. I will present the mock neutral hydrogen catalogues that we are developing, using the Horizon run 4 simulations, to cross-correlate with mock galaxy catalogues from low redshift surveys and I will show the preliminary results from the first mock catalogues.

  • PDF

Analysis of $^{99m}Tc-ECD$ Brain SPECT images in Boys and Girls ADHD using Statistical Parametric Mapping(SPM) (통계적 파라미터지도 작성법(SPM)을 이용한 남여별 ADHD환자의 뇌 SPECT 영상비교분석)

  • Park, Soung-Ock;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.31-41
    • /
    • 2004
  • Attention deficit hyperactivity disorder(ADHD)is one of the most common psychiatric disorders in childhood, especially school age children and persisting into adult. ADHD is affected 7.6% in our children, Korea. and persisting into $15{\sim}20%$ in adult. And it is characterized by hyperactivity, inattention and impulsivity. Brain imaging is one of way to diagnosis for ADHD. Brain imaging studies may be provide information two types - structural and functional imaging. Structural and functional images of the brain play an important role in management of neurologic and psyciatric disorders. Brain SPECT, with perfusion imaging radiopharmaceuticals is one of the appropriate test to diagnosis of neurologic and psychiatric diseases. Ther are a few studies about separated analysis between boys and girls ADHD SPECT brain images. Selection of Probability level(P-value) is very important to determind the abnormalities when analysis a data by SPM. SPM is a statistical method used for image analysis and determine statistical different between two groups-normal and ADHD. Commonly used P-value is P<0.05 in statistical analysis. The purpose of this study is to evaluation of blood flow clusters distribution, between boys and girls ADHD. The number of normal boys are 8(6-7y, average : $9.6{\pm}3.9y$) and 51(4-11y, average : $9.0{\pm}2.4$) ADHD patients, and normal girls are 4(6-12y, average : $9{\pm}2.4y$) and 13(2-13y, average $10{\pm}3.5y$) ADHD patiens. Blood flow tracer $^{99m}Tc-ethylcysteinate$ dimer(ECD) injected as rCBF agent and take blood flow images after 30 min. during sleeping by SPECT camera. The anatomical region of hyperperfusion of rCBF in boys ADHD group is posterior cingulate gyrus and hyperperfusion rate is 15.39-15.77% according to p-value. And girls ADHD group appears at posterior cerebellum, Lt. cerbral limbic lobe and Lt. Rt. cerebral temporal lobe. These areas hyperperfusion rate are 24.68-31.25%. Hypoperfusion areas in boys ADHD,s brain are Lt. cerebral insular gyrus, Lt. Rt. frontal lobe and mid-prefrontal lobe, these areas decresed blood flow as 15.21-15.64%. Girls ADHD decreased blood flow regions are Lt. cerebral insular gyrus, Lt. cerebral frontal and temporal lobe, Lt. Rt. lentiform nucleus and Lt. parietal lobe. And hypoperfusion rate is 30.57-30.85% in girls ADHD. The girls ADHD group's perfusion rate is more variable than boys. The studies about rCBF in ADHD, should be separate with boys and girls.

  • PDF