• Title/Summary/Keyword: Multi-time

Search Result 8,254, Processing Time 0.035 seconds

ON FRACTIONAL TIME-VARYING DELAY INTEGRODIFFERENTIAL EQUATIONS WITH MULTI-POINT MULTI-TERM NONLOCAL BOUNDARY CONDITIONS

  • K. Shri Akiladevi;K. Balachandran;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.803-823
    • /
    • 2024
  • In this paper, we study the existence and uniqueness of solutions for the fractional time-varying delay integrodifferential equation with multi-point multi-term nonlocal and fractional integral boundary conditions by using fixed point theorems. The fractional derivative considered here is in the Caputo sense. Examples are provided to illustrate the results.

A Priority-based Interactive Approach to Multi-agent Motion Planning (우선 순위 기반 쌍방향 다개체 동작 계획 방법)

  • Ji, Sang-Hoon;Jung, Youn-Soo;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.46-57
    • /
    • 2006
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agent. Most of the past research results thus are based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents for the case of general shaped paths in agent movement. First, to reduce the computation time, a collision map is utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, to minimize the maximum of multi-agent task execution time, a method is developed for selecting an optimal priority order. Simulations are finally provided for more than 20 agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.

  • PDF

Improvement in Reconstruction Time Using Multi-Core Processor on Computed Tomography (다중코어 프로세서를 이용한 전산화단층촬영의 재구성 시간 개선)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.487-493
    • /
    • 2015
  • The reconstruction on the computed tomography requires much time for calculation. The calculation time rapidly increases with enlarging matrix size for improving image quality. Multi-core processor, multi-core CPU, has widely used nowadays and has provided the reduction of the calculation time through multi-threads. In this study, the calculation time of the reconstruction process would improved using multi-threads based on the multi-core processor. The Pthread and the OpenMP used for multi-threads were used in convolution and back projection steps that required much time in the reconstruction. The Pthread and the OpenMP showed similar results in the speedup and the efficiency.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

A Computational Interactive Approach to Multi-agent Motion Planning

  • Ji, Sang-Hoon;Choi, Jeong-Sik;Lee, Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.295-306
    • /
    • 2007
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agents. Most of the past research results are thus based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents, for the case of general shaped paths in agent movement. First, to reduce the computation time, an extended collision map is developed and utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, a priority for multi-agents is considered for successive and interactive modifications of the agent movements with lower priority. Various solutions using speed reduction and time delay of the relevant agents are investigated and compared in terms of the computation time. A practical implementation is finally provided for three different types of agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.

A study on the Aerodynamic Characteristics of a Multi-Functional Spoiler (다기능 spoiler의 공력특성에 관한 연구)

  • Lee, B.J.;Sheen, D.J.;Kim, W.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.8 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An experimental study was performed on the time lag, lift and drag characteristics of a multi functional spoiler which is a device to increase lift and drag contrary to conventional spoiler which decrease lift and increase drag. In this study, a wind tunnel investigation was made of the effect of incidence angle, slot width, and chordwise location of multi functional spoiler on the time lag, lift and drag characteristics of a wing. The results indicate that the time lag of a multi functional spoiler is influenced mainly not only by the chordwise location of a spoiler but also by the slot width between spoiler and wing upper surface. Multi functional spoiler can reduce time lag effectively by slotting the trailing edge of spoiler with slot ratio (slot width devided by the wing chord length) between 0.05 and 0.1. Also, it shows that the lift and drag coefficients of the wing with the multi functional spoiler and trailing edge flap are increased by 20% and 80%, respectively, compared to the wing with trailing edge flap only.

  • PDF

Multi-Time Scale Separations and Optimal Control Problems of Multi-Parameter Singular Perturbation Systems (여러 매개상수 특이접동계에서의 여러 시간스케일 분리와 최적제어 문제)

  • Kim, Sam-Soo;Hong, Jae-Keun;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 1987
  • The hierarchical approach method is proposed to sperate each different time scale sub-systems from linear time invariant multi-parameter singular perturbation systems. By means of this proposal, the original multi-parameter singular perturbation systems is completely separated into independent subsystems with each different time scale. It is also investigated that the controllability of the system is invariant. And this paper applies singular perturbation methods to the minimum control effort problem for linear time invariant systems with constrained controls. Also near-optimum control theory, which is based on dividing the total time interval with the time scales respectively, is proposed. As a result, the time scale separation method is show to be particularly useful in a near optimum design which can be otained through a decentralized control structure.

  • PDF

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

Efficient Similarity Search in Multi-attribute Time Series Databases (다중속성 시계열 데이타베이스의 효율적인 유사 검색)

  • Lee, Sang-Jun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.727-732
    • /
    • 2007
  • Most of previous work on indexing and searching time series focused on the similarity matching and retrieval of one-attribute time series. However, multimedia databases such as music, video need to handle the similarity search in multi-attribute time series. The limitation of the current similarity models for multi-attribute sequences is that there is no consideration for attributes' sequences. The multi-attribute sequences are composed of several attributes' sequences. Since the users may want to find the similar patterns considering attributes's sequences, it is more appropriate to consider the similarity between two multi-attribute sequences in the viewpoint of attributes' sequences. In this paper, we propose the similarity search method based on attributes's sequences in multi-attribute time series databases. The proposed method can efficiently reduce the search space and guarantees no false dismissals. In addition, we give preliminary experimental results to show the effectiveness of the proposed method.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.